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TECHNICAL PAPER

THERMOCAPILLARY FLOW WITH EVAPORATION AND CONDENSATION
AND ITS EFFECT ON LIQUID RETENTION IN LOW-G FLUID
ACQUISITION DEVICES

I. THE PROBLEM

A. Introduction

This study addresses a problem that directly pertains to the design of propellant and liquid
management systems on spacecraft. In microgravity, liquid tends to assume an indeterminate
orientation, and spacecraft tanks often incorporate devices that exploit surface tension to position,
control, and maintain access to gas-free liquid. The outside surfaces of these liquid acquisition
devices (LAD’s) usually consist of a fine-mesh screen or porous barrier that segregates liquid from
pressurant gas in the tank. Although such systems are used extensively with nonvolatile fluids, their
performance with cryogens, particularly liquid hydrogen, is rather unpredictable. Prior tests have
indicated that pressurization with heated vapor can reduce or even eliminate the ability of LAD’s to
retain gas-free liquid.

The objective of this study is to investigate the possible causes for retention loss in systems
where the fluid is stored at or near its saturated state. The hypothesis that the convection processes
arising in pores with dimensions and superheating/subcooling levels corresponding to cryogenic LAD
applications are responsible for loss of retention will be evaluated. Although the study is directed at
systems that maintain a pressure differential across a liquid and vapor/gas interface, understanding
the nature of convection near the surfaces of liquid-filled wicking structures and porous media is
important to the design of many engineering systems.

B. Background

An important aspect of fluid transfer in microgravity is the acquisition of gas-free liquid from
storage tanks.! 2 When subjected to an acceleration or gravitational field, liquid settles to the bottom
of a tank to minimize its potential energy. In microgravity, however, the orientation is indeterminate
and dictated by the competing effects of acceleration and surface tension. Oftentimes, the equilibrium
position is not over the tank outlet, and special techniques and devices must be used to acquire
liquid and to foster its expulsion.

One method is to apply scheduled thrusts via propulsive venting or attitude control rocket
firings to provide a linear acceleration large enough to settle the liquid. After imposing an
acceleration, the liquid or propellant can be fed to an engine or another receiver tank, depending on
mission requirements. Although this method has been used successfully on upper stages, such as
the Saturn V and Centaur, it tends to complicate flight operations and is impractical for missions
involving refill from an onorbit fuel depot or transfer within a complex network of tanks.



Another method is to incorporate “passive” systems or devices that exploit surface tension
to hold the liquid in a desired location or orientation.34 These so-called LAD’s have been used on
spacecraft for years, primarily to control nonvolatile liquids and storable propellants. However, their
convenience and effectiveness have made them appealing options for use with cryogenic propellants
and fluids. LAD’s can be used not only to guarantee access to vapor or gas-free liquid, but also to
control center of gravity, damp sloshing motions, and facilitate venting of liquid-free pressurant.

Numerous LAD concepts have been proposed and used over the years. The most common
ones are generally classified as either partial control devices or total communication systems. Partial
control devices consist of a basket or trap that holds only a portion of the tank’s liquid contents over
an outlet while leaving the remainder free. An illustration of this concept installed within a spacecraft
tank is shown in figure 1. The outer surface of these devices is ordinarily constructed of a fine-mesh
screen or similar porous material. When the surface is exposed to vapor or gas, capillary forces in
the screen pores prevent external gas from entering the LAD and mixing with the liquid.
Alternatively, when liquid contacts the outside surface, the pores permit flow into and out of the
device.

Liquid Hydrogen
or Oxygen Tank

Gas (Ullage)

KOSESSSSE K

Liquid Refill
(Resettling)

Exposed
Screen

To Engine
Powerhead

Figure 1. Partial control LAD.

These types of LAD’s are primarily used to enable engine restarts in space or to provide
continual access to propellant during high acceleration maneuvers. Upon application of thrust, the
liquid settles and refills the trap which connects to the tank outlet. The trap is sized to provide
enough gas-free propellant to restart and operate the engines until the remaining tank liquid collects
over the outlet.

Total communication or gallery-type LAD’s are designed to establish and maintain an
uninterrupted flow path from the bulk liquid to the tank outlet. Figure 2 shows a schematic of a
gallery LAD that would be used for onorbit resupply of propellant. Since liquid in microgravity tends
to collect on tank walls, a common configuration includes a series of semicircular flow channels
spaced only a short distance away from the wall. The wall-facing surface of each gallery consists of a



fine-mesh screen that permits the flow of liquid into the device, but inhibits the ingestion of gas. The
galleries are all manifolded at the tank outlet, and as long as at least one of the channels remains in
contact with the bulk liquid, tank pressurization will drive liquid through the channel into the tank
outlet.

Vapor/Gas
Pockets

Exposed
Screen

Unexposed

, Screen
To Receiver

Vessel

Figure 2. Total communication LAD.

Although fundamentally different in terms of design and function, both concepts rely on fine-
mesh screens that allow liquid to pass into a channel or trap while inhibiting the flow of vapor. This
unique behavior is due to the meniscus formed by surface tension between the screen mesh and
liquid. As long as liquid adheres to the screen wires, vapor is kept out of the channel, and a pressure
difference can be maintained to support flow through the device.

The most important design characteristic of a screen or porous LAD surface is the pressure
differential it can maintain between the gas and liquid. The maximum possible differential is
commonly referred to as the “bubble point pressure” and is a function of the screen weave and liquid
properties. For a circular pore, the equation for bubble point pressure is easily derived from a force
balance equating surface tension stress along the contact line to the pressure difference across the
meniscus. In almost all applications, however, the screen consists of a complex interweave of wires
or a random assortment of sintered metallic fragments that is extremely difficult to characterize
analytically. Because of this, the equation for the screen’s bubble point APy, namely:

4y cos @
AP, =22 (1)

is used to determine an effective hydraulic diameter D based on an experimentally measured
pressure difference. For most fluids used in propellant applications, the contact angle @ is nearly
zero and cos @ = 1. The size of commercial screens ranges considerably, and weaves with effective
diameters as low as 1 um to 10 um are available.>



The performance of screen LAD’s with nonvolatile liquids is well understood and has been
demonstrated in numerous applications. When inside a screen channel or trap, these fluids are
relatively immune to the minute departures in thermodynamic equilibrium caused by venting,
pressurization, or conduction heating through the screen structure. Evaluating LAD retention
performance is a straightforward problem that involves estimating screen size requirements from
equation (1) and determining if the total pressure in the LAD ever results in a gas/liquid pressure
differential that exceeds the screen’s bubble point.

With cryogens and fluids stored in a saturated state, retention behavior is more complex.
Since evaporation from screens exposed to gas or vapor is more prevalent than with nonvolatile
liquids, wicking considerations become important.# 3 Furthermore, because vapor may be generated
within the LAD as a consequence of unavoidable heat leaks, features must be added to remove
trapped vapor either through straight venting or periodic cooling and condensation.

Two very important aspects of spacecraft cryogenic fluid acquisition systems are tank
pressurization and venting, which must be employed whenever the liquid is actively handled or
controlled.! Pressurization is necessary to provide adequate back pressure for liquid expulsion to an
engine powerhead or another tank. Venting, on the other hand, is performed during fill operations to
relieve back pressure or is implemented periodically to compensate for liquid boiloff and vaporization.
Both procedures involve changing the thermodynamic state of the pressurant relative to the liquid.

The most common pressurant gases used with nonvolatile liquids are ambient-temperature
nitrogen and helium, which are supplied from a separate receptacle or tank. Since the liquid is
subcooled, it is relatively immune to the changes in thermodynamic state caused by pressurization
and venting. This type of pressurization system can also be used with cryogens and other saturated
- liquids, provided the pressurant has a lower boiling point than the liquid.

Another method, which has the potential for reducing cryogenic storage system weight and
complexity, is “autogenous pressurization.” With this concept, a portion of the liquid is drawn off,
pressurized, heated, and reinjected into the tank as the pressurant gas. The benefits of this system
are its elimination of an additional gas supply and its potential reduction in weight. The drawbacks
are that the vapor and liquid in the acquisition system are thermodynamically linked, and the liquid is
much more susceptible to heating conditions in the pressurant and LAD structure.

C. Statement of Problem

Prior experiments have shown retention of volatile liquids to be very sensitive to the type of
pressurization system used. This is particularly true of liquid hydrogen (LH;) which exhibits a
notable drop in retention capability when pressurized using an autogenous system (i.e., heated
hydrogen pressurant). Until recently, the reduction in screen bubble point observed in previous
experiments was attributed to evaporation and dryout along the screen surface. This explanation
would be plausible if the wicking rate had been too low to compensate for evaporation losses.
However, when screen coupons and LAD’s were subjected to highly evaporative environments,
there appeared to be no significant degradation in retention capability. That is, application of direct
conductive heating, pressurization with saturated hydrogen vapor, or pressurization with heated
helium failed to incur much change in the nominal bubble point.6-13



The only time that a consistent reduction in retention occurred was when the tank and LAD
surface were pressurized with heated hydrogen. Although no theoretically based investigation of this
phenomena has been conducted, retention loss seems to ensue when the porous structure is
subcooled with respect to the vapor. This fact, however, does not in itself constitute a complete or
adequate explanation for retention loss. Rather, the cause is likely related to the liquid’s response to
thermodynamic nonequilibrium between the liquid and pressurant.

An immediate consequence of nonequilibrium is the convection arising from heat transport
and temperature differences in the screen pores. The most likely convection modes in the size range
considered here are thermocapillarity, which arises from thermal ‘variation of surface tension along
the meniscus, and evaporation and condensation, which become important if the liquid is near its
saturated state. The flow arising from these convection modes, in turn, can influence surface
morphology and may be responsible for the deterioration in retention observed in experiments.

The problem, therefore, is to determine whether the convection processes arising from
thermodynamic nonequilibrium between the liquid and pressurant could lead to the retention failures
observed in previous LAD experiments with liquid hydrogen.

D. Study Approach

The primary objectives of this study are to examine the retention problem and develop a
plausible explanation for the cause of retention loss. In so doing, this study will improve
understanding of the fluid flow associated with the subcooling and superheating of volatile, wetting
liquids in small pores. Of particular interest is the manner in which these processes influence
interfacial heat transfer and liquid surface morphology.

The study approach has been divided into six related tasks. The first is to formulate the
problem in such a way that the hypothesis of convection about individual pore surfaces being the
cause of retention loss can be evaluated. This requires development of a physical representation of
the problem that models the transport phenomena and surface behavior of pores with length scales
between 1 um and 102 pm and superheat/subcooling levels of 10-1 K to 1 K.

In the second task, the governing equations and boundary conditions that characterize the
convection modes associated with the physical model are derived. For the length and temperature
levels considered here, the modes include thermocapillary stress, buoyancy, evaporation, and
condensation. An important aspect of this task is to define a consistent set of dimensionless
parameters that account for the fluid property and force ratios relevant to the problem. Following the
approach of Burelbach et al.,14 these parameters are obtained by scaling the governing equations and
boundary conditions according to viscous scales. This approach is necessary for application of the
one-sided approximation, which allows one to disregard transient vapor phenomena and to focus on
liquid behavior. It also provides a basis for performing scaling comparisons, and renders the
governing equations in a form more convenient for numerical analysis.

The third task involves development of a numerical model based on the finite element method.
This model is incorporated in a computer code that calculates steady-state velocity, pressure, and
temperature distributions, while accounting for deformation of the free surface. A major challenge in
modeling the highly wetting fluids considered in this problem is the handling of low contact angles in
the meniscus interline region. The large surface derivatives near these points promote substantial



gradients in the flow parameters which are best handled using higher-order interpolation functions.
Another challenge is the large number of terms that must be included in the calculation of surface
geometry. The equation used for this is derived from the normal stress balance and is comprised of
terms representing pressure, thermally induced surface tension variation, momentum change
between the vapor and liquid, and viscous stress.

In the fourth part of the study, the dimensionless parameters derived from scaling the
governing equations and boundary conditions are used to assess the relative influence of different
terms in the equations for velocity/pressure, temperature, and surface geometry. This provides an
approximate indication of which forces and convection mechanisms predominate at different length
and temperature scales. Such a scaling analysis is also valuable for estimating physically relevant
parameter values.

The fifth task involves numerical examination of thermocapillary and interfacial flow about a
fixed, low contact angle surface. By assuming vanishingly small Bond, Capillary, and Crispation
numbers, one can safely ignore deformation and assume a circular geometry. The purpose here is to
examine the separate and combined effects of thermocapillarity, condensation/evaporation, and
contact angle on interfacial temperature and pressure, heat transfer, circulation, and surface stress. It
is important to assess the fundamental behavior of convection since it directly influences the
interfacial characteristics responsible for surface instability and loss of retention.

The sixth and final task involves examination of surface deformation. The criteria that link
surface deformation to retention loss are developed, and an analysis of first-order effects is
performed by assuming decoupled solutions for the flowfield and meniscus. Meniscus geometry is
recalculated using the steady-state interfacial velocity, pressure, and temperature distributions
determined in the fifth task. The purpose is to evaluate the relative influence of deformation-
producing terms and dimensionless parameters in the equation for surface curvature. Finally, the
simultaneous solution of the steady-state flowfield and surface is considered. The intent is to
identify retention loss mechanisms that could arise as a result of either thermocapillary or interfacial
convection.

E. Significance of Study

The significance of this study lies in both its contribution to engineering applications involving
heat transfer in porous media and its advancement to the understanding of two-phase microgravity
fluid behavior. Although the emphasis is on retention in cryogenic liquid acquisition systems, the
results and methodology have application to a variety of fields. From an applications standpoint, the
study addresses a problem that is particularly relevant to devices that encounter condensation and
evaporation along a very fine porous structure. Heat transfer and overall performance of such
systems are strongly influenced by the combined-mode convection associated with thermocapillarity,
evaporation, and condensation.

A good example of this is the heat pipe,!> where prediction of latent heat transport across the
evaporator and condenser wicking surfaces is crucial for determining the total axial heat transfer rate
of the device. In the evaporator section, thermocapillarity and evaporation both tend to convect
superheated liquid onto the surface and promote transfer of latent heat and mass into the vapor. In
the condenser, however, thermocapillarity and condensation counteract one another in that
thermocapillarity tends to cool the interface and augment heat transfer, while condensation restricts



it by raising interfacial temperature. The combination of these modes complicate the balance between
heat and mass transfer at different ends of the pipe which can either augment or inhibit the overall
heat transfer capability of the system.

Studying the influence of interfacial convection on heat transfer and retention in small liquid
cavities also represents an original contribution to the field of microgravity fluid mechanics. The
problem considered in this study can be viewed as a subset of a broader class of problems
addressing free liquid surfaces subjected to the combined effects of thermocapillary stress and other
convection mechanisms. Although many problems of this type have been studied before, most work
in this area to date has concentrated on the separate or simultaneous action of thermocapillarity and
buoyancy—the most familiar cases being the liquid-bridge and float-zone configurations analyzed in
materials processing.1® These regimes are particularly useful for modeling and predicting the melt
concentrations in various ground-based crystal growth techniques. They are also often used to
model low-gravity containerless processing due to the unavoidable presence of extraneous
accelerations and disturbances. In either case, buoyancy must be accounted for because of the large
length scales associated with the problem (~1 cm to 1 m). Furthermore, since the ratio of viscous
forces to surface tension is usually negligible, free surface deformation is dictated almost entirely by
hydrostatic effects and is independent of flow conditions.

F. Summary

The goal of this study is to improve the understanding of convection processes associated
with the subcooling and superheating of volatile, wetting liquids in a microgravity environment.
Although the results are pertinent to low-gravity applications, the selection of length and
temperature scales is geared more toward systems having small pores and liquid passages. The
primary reason for conducting such a study is to determine if flow effects around these surfaces could
lead to conditions of retention failure when subjected to different environmental conditions.

The study approach consists of the following: (1) formulation of a physical model; (2)
derivation of the governing equations, boundary conditions, and dimensionless parameters that
characterize fluid flow with thermocapillary stress, buoyancy, evaporation, and condensation;
(3) development of a numerical model that calculates the steady-state velocity, pressure, and
temperature distributions in the pore, while accounting for deformation of the free surface; (4) scaling
analyses to assess the relative influence of different terms in the equations for velocity/pressure,
temperature, and surface geometry; (5) numerical examination of thermocapillary and interfacial flow
about a fixed, low contact angle surface; and (6) examination of surface deformation via both
decoupled and integrated solutions.

II. REVIEW OF LITERATURE

A. Introduction

The approach draws on work from several different research areas. In this section, literature
from each field is reviewed to develop an integrated basis for analyzing the problem. First, the
experimental work with liquid hydrogen and various pressurant conditions that led to identification of
the “retention problem” is presented. This section summarizes the results of tests in which



screened coupons and LAD channels were subjected to different pressurant types, temperatures,
and conductive heat loads.

Since the problem involves convection on a microscopic scale, the literature was reviewed
primarily in the areas of thermocapillarity, evaporation, and condensation. When it comes to
characterizing thermocapillary flow, the situation examined here is very similar to the liquid bridge
and float-zone configurations studied in materials processing. However, important differences, such
as the presence of liquid/vapor phase change, small contact angles, and mass transfer with a
relatively large liquid reservoir, make the problem addressed here unique. It is also expected that
because of the small length scales, viscous and flow-related phenomena could compete with surface
tension and cause appreciable surface deformation under some conditions. Much of the interfacial
physics and assumptions regarding surface equilibrium also appear in prior investigations of thin film
and capillary jet instability. This study, however, considers a pore geometry and dimensional range
in which intermolecular attraction between the liquid and solid is best accounted for by a contact
angle constraint rather than a corrected surface or body force. By ignoring intermolecular and, as will
be shown later, acceleration body forces, it is assumed that any deformation of the free surface is
caused by surface tension variation, pressure, interfacial momentum flux, and/or viscous stress.

Note that several dimensionless groupings are referred to throughout this section and
remaining portions of the text. Most of these parameters are derived in section III as part of the
theoretical development, but a few are taken directly from the references. A definition of all groupings
is provided in table 2.

B. Liquid Retention

Several investigations of LAD retention performance with cryogenic liquids have been
performed since the early 1970’s. Among the earliest was Burge and Blackmon® who tested the
retention capabilities of fine-mesh screen samples in LH; while subjected to warm hydrogen
pressurant. In their experiments, hydrogen vapor was evaporated from a screen and blown back
through a fan and heater. Contrary to their earlier experiments with nitrogen, they found that
warming the hydrogen vapor by only 5 to 10 K above the bulk liquid temperature caused premature
retention loss (i.e., lowering of the effective bubble point pressure). For vapor temperatures above
30 K, the reduction in liquid retention reached a maximum of ~70 percent of the nominal bubble point
pressure.

Burge and Blackmon later conducted another experiment in which screen samples were
tested in an apparatus that enabled tighter control of pressurization rate and heat flux. Although the
heater was placed closely above the screen, there was no fan or associated forced convection as in
the first test. Results showed no premature retention loss for vapor temperatures up to 40 K. This
behavior, however, was not observed in a third larger-scale experiment in which a screen basket
was submerged in LH; and then raised, while inverted, into hydrogen vapor of various temperatures.
With temperatures of 40 K, retention loss was clearly evident and caused an immediate draining of
the basket, but with temperatures less than 30 K, the basket retained the liquid until the hydrogen
gas pressure was allowed to drop below the vapor pressure of the liquid.

Blackmon? later tested a vertically oriented screen channel in which LH, was withdrawn up
through the device and out the top of the tank (i.e., minus one-g expulsion). He tested with both
hydrogen and helium gas, and found that warm pressurant, regardless of gas type, resulted in



premature retention loss. The reduction in retention was as much as 70 percent of the design bubble
point with hydrogen vapor, but was only about 20 percent with helium. In some of the tests with
warm pressurant, heat conduction into the channel through fittings and solid portions was sufficient
to cause vaporization of the liquid and to eliminate retention capability altogether. Tests with colder
pressurant close to the hydrogen saturation temperature yielded generally better than predicted
results and no premature screen breakdown. There was, however, more variability in retention
capability with hydrogen than with helium.

Using the same apparatus employed by Burge and Blackmon in their second series of screen
sample tests, Cady® later measured the bubble points of different screens in LH, while subjecting
them to various calibrated heating rates. He found that, even at rates greatly exceeding the worst
case for a spacecraft application, the maximum reduction in bubble point was less than 15 percent—a
result consistent with the less extensive testing by Burge and Blackmon. Wicking through the
screen and evaporation at the surface effectively absorbed the heat. This was in spite of the test
conditions in several of the runs being deliberately established so that the liquid beneath the screen
was superheated with respect to the local liquid pressure.

Paynter and Page® and Warren!® 1! conducted minus one-g expulsion tests with LH; in a
63.5-cm diameter spherical tank fitted with a total communication acquisition device comprised of
eight screened channels. In tests where the outflow was continuous, no screen breakdown occurred,
regardless of the pressurant type (i.e., hydrogen or helium) or pressurant temperature. However, in
tests where the expulsion was performed intermittently, with alternating hold and outflow periods,
retention loss occurred repeatedly with warm hydrogen pressurant but not with warm helium. The
pressure difference across the screen imposed by hydrostatic head and screen flow-through loss,
although not measured, was probably not more than 80 percent of the bubble point of the screens
used in the LAD. Warren concluded that either hydrogen or helium may be used as pressurant as
long as there are no stagnant regions within the LAD.

Bennett!2 also conducted retention experiments involving a 34-cm high partial control LAD
(i.e., start basket) in LH,. At the beginning of each test run, the basket was submerged in liquid. The
liquid was then drained to a level below the basket and held there so that the basket was completely
surrounded by the pressurant gas. Tests were conducted with both gaseous hydrogen and helium. In
all hydrogen pressurant tests, the vapor was cooled to about 90 K prior to injection into the test
dewar, and the screen failed even before the liquid level was lowered to the bottom of the basket. On
average, the hydrostatic head at the point of failure was 50 percent of the normal bubble point of the
screen in LH,. With helium pressurant, the liquid level could always be lowered below the basket,
and subsequent retention was demonstrated for periods up to 3 h.

The most recent and possibly comprehensive investigation of LH, retention was performed by
Meserole and Jones,!3 who measured the breakdown pressure of a semicircular screened channel
with different pressurant types (i.e., helium, ambient temperature hydrogen, and parahydrogen),
pressurant temperatures, and degrees of liquid stagnation. With helium, no measurable variation in
retention performance was observed, and the breakdown pressure in every test was close to the
predicted screen bubble point. With hydrogen vapor, however, retention exhibited strong sensitivity
to pressurant temperature. Cool vapor at approximately saturation temperature yielded breakdown
pressures close to the predictions, which were slightly less than with helium. With a warm vapor,
the breakdown pressure was significantly reduced, and temperatures as low as 15 to 20 K above
saturation caused sharp reductions in liquid retention capability.



Meserole and Jones also found that interrupting the outflow and stagnating liquid in the LAD
with hydrogen pressurant markedly reduced retention capability, even with vapor temperatures a few
degrees above the bulk liquid temperature. Retention failure repeatedly occurred shortly after the
outflow was interrupted, when the differential pressure was just 20 percent of the nominal bubble
point.

Meserole and Jones proposed several explanations for their observations and those made by
previous researchers. They felt that evaporative cooling was responsible for the strong tolerance to
heated hydrogen vapor observed with individual screen samples, while the reduced retention was
attributed to condensation of warm vapor on the screen. During liquid expulsion, the vapor is
pressurized, and the screen pores become subcooled with respect to the vapor, thereby promoting
condensation. However, in screen sample experiments, either there is no active pressurization or the
screen is heated directly. Thus, the pores are superheated with respect to the vapor, and evaporation
occurs. With helium, evaporation always takes place regardless of whether the vapor is pressurized
or not.

Meserole and Jones felt that the results of these tests helped clarify the differences observed
with various pressurant conditions. Although they did not offer an explanation as to why evaporation
and condensation influence retention so differently, they felt that further investigation was warranted
to determine how screen heating and cooling alters the attachment of the liquid surface to the screen
wires and causes premature breakdown.

C. Thermocapillary-Driven Convection

Most prior work involving thermocapillarity and its closely associated topic of combined
thermocapillary-buoyancy driven flow has been done in the area of materials processing.16 Specific
applications that have served as an impetus for investigations are crystal growth,!7 glass
manufacturing,!® and industrial processes such as welding.!® Although much of this research,
particularly in conjunction with the study of flowfields in containerless processing, is relevant to the
study of convection-induced retention loss, direct application is limited by the fact that the melts
associated with materials research typically have larger contact angles (@ ~ 90°) and do not involve
appreciable liquid-vapor phase change.

A popular geometry for the study of pure and combined convection is the rectangular cavity
with isothermal side walls and a horizontal upper free surface. Numerical investigations by Bergman
and Ramadhyani,2® Bergman and Keller,2! Jue et al.,22 and Hadid and Roux?3 yielded insight into the
sensitivity of flow variables to key dimensionless parameters. In all cases, the variation of free
surface geometry was treated as a lower-order effect and neglected by assuming a small thermal
variation of surface tension with respect to a reference (i.e., low Crispation number Cr) and low ratio
of viscous to surface tension forces (i.e., low Capillary number Ca).

Several researchers have applied the same geometry to evaluate thermocapillary convection
with a deformable liquid surface. Sen and Davis,24 Sen,?5 and Strani et al.26 applied asymptotic
methods to determine the flowfield and free surface shape at the ends and core of differentially
heated slots. They found that thermocapillary convection with either fixed contact angle or pinned
end conditions causes bulging in colder surface regions, where the flow accumulates and increases
pressure. Zebib et al.2’ and Carpenter and Homsy?® examined interface geometry by means of
perturbation techniques, and Sen25 applied an independent coupling of the meniscus force balance
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condition to show that the interface can undergo significant deflection with large values of Cr.
Assuming a prescribed contact angle, Cuvelier and Driessen2d found that the free boundary is highly
sensitive to Ca.

Cylindrical geometries have also been used to investigate thermocapillary and buoyancy-
driven flow in melt regions. Earlier studies by Fu and Ostrach,3® Shen et al.,3! and Kobayashi3?2
assumed a fixed surface independent of convective effects. Xu and Davis33 studied thermocapillary
instabilities of a cylindrical column. Somewhat more recently, Duranceau and Brown,34 Hyer et al. >
Lan and Kou,36 and Zhang and Alexander37 addressed the problem of a cylindrical float zone with a
deformable interface. They applied a pinning condition at the contact point and observed little flow
induced deformation. The notable deformation in the buoyancy-dominant one-g regime was
attributed to hydrostatic effects, while the surface remained essentially flat in a microgravity
environment. These results and the assumption of vanishingly small Cr and Ca were entirely
consistent with the relatively large domains considered in these studies. However, Kamotani and
Platt3® recently showed that variation in surface geometry could greatly influence convection within
the cavity. Through experiments and numerical analysis, they compared the convection and heat
transfer characteristics of a flat and curved 10°-contact angle surface, and noted a marked reduction
in thermocapillarity, flow intensity, and local heat transfer rate with the highly curved surface.

All of these results indicate that convection-induced deformation can be neglected in float-
zones and macroscopic free surface flows, where Ca and Cr are ordinarily quite small. The length-
scales of the retention problem, however, are large enough that the values of Ca and Cr fall within the
range where deformation can be significant. When viewed in this context, the results suggest that
retention loss may be related to convection-induced deformation of the free surface.

D. Liquid Evaporation and Condensation

Most past studies of evaporating menisci have focused on either the intrinsic meniscus,
which is the portion of the interface characterized solely by surface tension forces, or the submicron
region near the interline where the solid substrate plays an important role in surface phenomena.
Work dealing with the submicron region has concentrated on determining the heat transfer and
stability of thin liquid films and menisci close to solid surfaces. In this region, buoyancy forces and
convective terms in the momentum equation are typically ignored, and emphasis is placed on the
relationship between thermocapillary stress and intermolecular forces between the contact surface
and liquid (see Potash and Wayner,3® Renk and Wayner,*© Werhle and Voulelikas,*! and
Mirsamoghadam and Catton®2). In a study of the stability of an evaporating liquid film, Burelbach et
al.14 treated the van der Waals forces as a body-force term in the momentum equation. They noted
that the combined action of this attraction, thermocapillarity, and evaporation can lead to significant
instability and deformation of the surface. This behavior had been observed before in other references
cited by Burelbach et al.

Swanson and Herdt#3 developed an analytical model of an evaporating meniscus in a capillary
tube accounting for all regions of the meniscus. Their assumptions typified those of prior studies;
they ignored hydrostatic pressure variation and convective terms in the momentum equation, and
accounted for Marangoni effects only in the thin film region. The solution for the thin film near the
wall was subsequently coupled with that through the center of the tube. Swanson and Peterson44
developed a mathematical model of the intrinsic meniscus in a V-shaped channel for an unsaturated
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wetting liquid evaporating into air. The formulation of the model generated matching (or coupling)
parameters that accounted for phenomena in the interline region.

In a study very similar to the problem in this report, Chen et al.45 applied a one-sided model
of a superheated liquid to investigate motion in a square cavity with isothermal side walls. They
determined the flowfields and interface heat transfer rates at moderate values of Marangoni number
Ma, interfacial resistance Rs, and Biot number Bi. Buoyancy forces were neglected, and meniscus
geometry was calculated independently based on hydrostatic pressure considerations alone. This
assumption may be invalid for an evaporating surface. In this case, temperature-dependent vapor
recoil arises in the normal force balance and may influence geometry even at low Ca and Cr.

E. Summary

In this section, literature relevant to the retention problem was reviewed. It first addressed
prior tests of screen retention capability with liquid hydrogen and discussed the difficulties of
pressurizing with heated hydrogen vapor. Although retention failure was repeatedly encountered in
several experiments, no plausible explanation of its cause had been proposed. Meserole and Jones!3
improved understanding in this area by distinguishing the probable surface convection modes
associated with vapor and inert gas pressurization. However, they did not suggest reasons why the
mode resulting from vapor pressurization (i.e., condensation) contributed to retention loss.

Since retention loss was observed in pores having characteristic dimensions of ~1 pum to 102
pm, literature on the convection modes appropriate to these length-scales, namely thermocapillarity,
evaporation, and condensation, was surveyed. Most of the work reviewed in the area of
thermocapillary flow dealt with variants of the well-known float-zone and liquid bridge problems.
Although the surface pore problem is similar to these, it is unique in several ways: (1) the liquid is
volatile such that fluid motion results from the simultaneous action of interfacial mass transfer (i.e.,
evaporation or condensation) and thermocapillary stress; (2) buoyancy (whether in one or Zero-g) is
negligible due to the small dimensions of the problem domain; (3) the interface curvature (in the
isothermal state) is nearly constant due to vanishingly small Bond numbers; (4) the liquid is wetting
and intercepts the solid boundaries at a constant acute contact angle; (5) the pore connects to a
large reservoir that permits balancing of mass flow through the pore; and (6) the ratio of viscous
forces to surface tension is large enough to cause appreciable surface deformation under some flow
conditions.

Prior studies in thermocapillary flow were useful for understanding basic flow patterns and
parameter sensitivities, but none fully addressed the issues associated with the retention problem.
The same held true for research in the field of interfacial flow and heat transfer which is primarily
geared toward stability of thin films and meniscus interline regions. In addition, the length scales of
interest were typically much smaller and, therefore, required inclusion of solid/liquid intermolecular
forces. However, the approach used for modeling interfacial equilibrium and its influence on mass
transfer is nevertheless applicable to the problem in this study.
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III. THEORETICAL MODEL DEVELOPMENT

A. Introduction

The problem is to evaluate the influence of thermocapillarity, evaporation, and condensation
on fluid flow, heat transfer, and retention in a small pore of volatile, wetting liquid exposed to its own
vapor. To analyze this problem, one must first define a physical reference and corresponding
mathematical model that characterize the thermophysics and imposed conditions on the surfaces of
porous media. The challenge is to capture all of the key aspects related to convection and free
surface behavior, while keeping the model simple enough for straightforward scaling and numerical
analyses.

B. Physical Model

Since the retention problem has not been theoretically examined before, definition of the
physical model is one of the primary contributions of this study. To begin, one must identify the
features of this problem that distinguish it from the traditional approach of evaluating pore retention
(equation (1)). One feature that arises from imposed pressurization and/or direct heating of the LAD
screen is a departure from thermodynamic equilibrium between the liquid and pressurant. It is
important that the physical model adequately represents this deviation and properly portrays the
relative quasi-equilibrium thermodynamic states between the pore structure, liquid, and pressurant
gas. A second feature is the complex geometry associated with screens and porous media. The
traditional approach of estimating screen retention capability (equation (1)) is based on a circular
pore geometry that permits application of a simple force balance. Likewise, in developing a physical
model for this problem, it is advantageous to define a domain whose boundaries are not only easy to
characterize analytically but also produce the convection modes relevant to the retention problem.

To define appropriate thermodynamic relationships between the liquid, gas, and pore
boundaries, the nonequilibrium conditions established in the retention tests described in section II
are reviewed. The types of heating conditions that the LAD’s and screen samples were subjected to
can be generalized as follows: (1) pressurization with heated vapor,® 7 9-13 (2) evaporation with an
overhead heater,6 8 (3) evaporation with an overhead heater followed by recirculation over screen
surface,5 (4) evaporation through conductive heating of screen,® and (5) pressurization with heated
helium.79-1113

In case (1), vapor is introduced into a vessel containing an LAD at a higher pressure and
temperature than the saturated liquid in the channel or trap. Upon pressurization, the liquid is no
longer in a saturated state, and it becomes subcooled with respect to the vapor. The process in case
(1) incurs the most retention failures and represents a subcooling of the liquid and screen relative to
a saturated or superheated vapor. In cases (2) and (3), the vapor is obtained through evaporation,
and liquid in the vicinity of the surface is superheated with respect to the surrounding vapor. In case
(2), the pressurant is not actively recirculated over the screen, and no significant retention loss is
observed. But in case (3), recirculation takes place and retention failures are more numerous.

In case (4), liquid is evaporated by heating through the screen wires. As in case (2), the

liquid becomes superheated relative to the vapor. However, because the entire wire is heated, the
region of superheat is expected to extend well around the pore vicinity. This case is also similar to
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case (2) in that no significant drop in retention capability occurs. In case (5), heated helium is
introduced at a higher pressure and temperature at the same general conditions as case (1).
Although the liquid is again subcooled with respect to a higher pressure and temperature pressurant,
no reduction in retention capability is observed. The main aspect that distinguishes cases (1) and
(5) is the higher level of nonequilibrium between the liquid and gas in the presence of helium, which
serves to reduce both evaporation and condensation.

The relative thermodynamic states in these tests represent either a superheating or
subcooling of the liquid and wire structure relative to a saturated vapor. In addition, the presence of
helium gas can be viewed as an imposed reduction in vapor/liquid equilibrium along the exposed
surface.

Another important aspect of the physical model is the geometry of the problem domain and
free surface. As stated in section I.C, retention loss is likely due to instability or adverse
deformation of the meniscus in response to the convection ensuing from thermodynamic non-
equilibrium. Therefore, the free surface must be defined within the context of a control volume to
enable application of governing equations and boundary conditions for fluid motion and heat transfer.
This is difficult because the contact surface of a typical porous structure usually consists of a
complex interweave of metal wires or random arrangement of sintered metallic fragments. Thus,
basing an assessment on an actual application would be unduly complicated by the variability in
contact surface geometry and uncertainty regarding interior flow conditions.

The problem is greatly simplified by assuming a two-dimensional domain that approximates
the geometrical characteristics of a porous structure. A domain that was considered early in the
study is depicted in figure 3. It basically represents a two-dimensional cross section of a screen with
individual menisci attached to each wire. An advantage of this configuration is that the curved side
walls closely model the shape of screen wire surfaces and properly account for the surface’s ability
to readjust to pressure changes by moving along the wires.

For an initial investigation, however, the domain in figure 3 introduces many complexities that
would have to be accommodated in a sophisticated numerical model and procedure. One of the most
significant is the lack of velocity, pressure, and temperature data for the boundaries defining the
liquid channel. An additional determination of bulk velocity, pressure, and temperature in the channel
would be required prior to solving the flowfield around the surface and wires. Secondly, modeling a
moving deformable meniscus would add considerable complexity to the numerics of the problem.

vapor meniscus

iqui )
(porous structure interior)

Figure 3. Simplified pore schematic.
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The model is further simplified by making the following assumptions. First, at the point of
retention loss for a static isothermal fluid, the meniscus acquires a maximum curvature, and its
contact points lie on a chord connecting the centers of the circles in figure 3. For the nonequilibrium
case, the meniscus should assume the same position relative to the screen wires at a pressure
difference corresponding to the reduced bubble point. The approach for analyzing the retention
problem then is to determine whether a stable, steady-state solution of the flowfield and surface
exists at the minimum separation distance. This assumption allows one to fix the endpoints at this
position and ignore movement of the meniscus boundary along the wire surface.

A second assumption is that the convection responsible for retention loss occurs close to the
surface, and is relatively independent of flow below the wires and in the LAD channel. Each pore is
so small relative to the LAD channel that the influence of bulk flow should be negligible. By
assuming fixed contact points and restricting flow effects to the surface vicinity, the curved side
walls are probably nothing more than a second-order effect on convection within the pore.

Based on these assumptions, one resorts to the greatly simplified domain depicted in figure 4,
which is very similar to the geometry examined by Chen et al.45 It consists of a two-dimensional
rectangular groove partially filled with an incompressible, Newtonian liquid. Although it will be
shown later that gravitational effects can be ignored, for the sake of completeness, a uniform
acceleration field is assumed to point downward in the —x; (—y)-direction. The left and right sides of
the pore (boundaries 1 and 3, respectively) consist of vertical side walls. The lower boundary (2)
opens to a large reservoir to enable balancing of liquid flow through the cavity and modeling of
capillary structure performance.

*
Xy =
>
¢
8
X, =0 y %
2 boundary 2 |
x=0 x =D

Figure 4. Problem domain.
The upper surface (boundary 4) is represented by a curved meniscus which is symmetric

about the pore center-line and bounded by an inert vapor. The shape of the interface is defined by the
function y(®) = y(9(x;,r) where the surface height above the base y(¥) is a function of the lateral
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coordinate x; and time z. The interface is assumed to wet the solid side walls at an acute contact
angle @, and is further characterized by the unit normal and tangent vectors (n; and s;) and contour
angle a.

Compared to the wire-based geometry in figure 3, the domain in figure 4 implicitly represents
a case where the wire diameter is much greater than the separation distance. In addition, fixing the
contact point (i.e., x2(0) = D and x,(D) = D) is akin to assuming that the meniscus can no longer
adjust to increased pressure differences between the vapor and liquid, and that it is at the maximum
bubble point pressure.

The configuration in figure 4 is similar geometrically to the domain studied in float-zone and
liquid bridge problems.34-37 However, there are several differences in the treatment of velocity
boundary conditions that make this problem unique. On boundaries 1 and 3, for instance, the x; and
x2 components of velocity are held at zero, V; = 0, by invoking impermeability and no-slip. Along the
meniscus, Neumann and Dirichlet-type boundary conditions are accounted for simultaneously by
applying the x; -direction thermocapillary stress condition to V;, and calculating V; directly from the
estimate of V; and the normal velocity V;n; arising from interfacial nonequilibrium. On boundary 2, it is
assumed that the flow into and out of the cavity is parallel and uniform. Consequently, V; = 0, and the
average flux required to balance the total flow across boundary 4 and adjust for surface deformation
is applied uniformly as the V, boundary condition.

The temperature boundary conditions are basically the same as a float-zone. The side walls
and vapor are assumed to be isothermal and are held at temperatures of T; and To, respectively. To
represents the fluid's saturation temperature, while T; can either be lower or higher depending on
whether the pore boundaries are subcooled T; < To or superheated T > Ty with respect to the vapor.
The boundary condition for temperature on the meniscus is handled using a Robin-type condition
which will be discussed in section ITI.C. Unlike the float-zone problem, the temperature along
boundary 2 is held constant at the side wall temperature T,. Thus, it is assumed that the liquid
residing in the interior capillary structure is either superheated or subcooled with respect to its
surrounding vapor.

Some of the other major assumptions include incompressibility, Newtonian fluid, one-sided
approximation for all vapor properties other than density, linear equation of state for density and
surface tension in terms of temperature, and restriction of liquid/vapor phase change to free liquid
surface.

C. Mathematical Model

The equations needed to solve the five dependent variables describing this system, i.e., V;, P,
T, and y(9, are obtained from the imposed conditions on boundaries 1, 2, and 3, the governing
equations of fluid motion, and the jump conditions across boundary 4. The calculation of y(*) is
indirectly linked to solution of the other variables and is described more extensively in section IV. To
summarize, a surface is determined that satisfies the constant contact angle constraint and normal
stress condition involving interfacial pressure, temperature, and velocity.

Throughout the remaining sections, this report makes use of linear equations of state for
surface tension and density. These approximations are all based on T; which represents the minimum
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temperature in the liquid and vapor domain, and depends on the heating mode applied. With
superheating, T; is the temperature of the saturated vapor T; = To, while for subcooling, it is the

boundary temperature 7; = T;.

The governing relationships for velocity, pressure, and temperature are based on constant
thermophysical properties and obtained from the continuity, momentum, and energy equations for an
incompressible fluid,47 namely:

V;=0, (2)
v,

P +pVV, j+Pyi~7;~pBT-T)g; =0 , (3)
S+ VT LT,=0, “

where
__1 _aﬂ) 5
P=—pa1), (5)

and

Ty =m (Vi 4V (6)

Note that the Boussinesq approximation is applied to restrict the thermal dependence of
density to the body force term in equation (3). Although the scaling results in section V will show
that buoyancy may be ignored for pore length scales <102 um, the approximation is useful for
separating out hydrostatic pressure P, from flow-induced pressure variations (i.e., dynamic
pressure) P4, where P = Pp+Py.

In addition to the governing equations, there are several jump boundary conditions that apply
along the meniscus surface. The simplest condition is the jump mass balance. It is used to relate
interfacial mass flux to temperature and derive velocity conditions on boundaries 2 and 4. The
balance?7 is expressed in terms of the scalar j by:

i=p (ViVhi=p VOV, . 7

V;¥ is the vapor velocity, V;(8) is the velocity of the interface, and the vapor density pM) is treated
as a constant. Assuming that the liquid domain Q deforms with time, the total mass balance
becomes:

g-f de+f jdr=0, (8)
tJa r

where T is the total boundary area. Applying incompressibility and restricting deformation and
interfacial flux to boundary 4 yields the following equation for volumetric flowrate and velocity along
surface 2:

~[ vir=[ (v-ve)nar+ 42 (9)
L, r, dr
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The second and probably most important jump condition is the momentum balance, which
because of its directional dependence, consists of a normal and tangential component. Substitution of
equation (7) into the normal component yields a general relationship for surface curvature which is
ultimately used to calculate y(5). Similarly, from the tangential component one obtains an expression
for thermocapillary stress and a condition for velocity along the meniscus. From reference 48, the
complete tensoral expression for the jump momentum balance is:

JV=V)— (o~ n+yKn+y,=0 . (10)

Equation (10) equates the stress imposed on the meniscus to interfacial momentum flux,
pressure due to surface curvature x, and tangential stress due to surface tension gradient. The
normal and tangential components are obtained by projecting equation (10) onto the unit vectors n;
and s;, respectively. In the tangential direction, one has:

JV=VN s~ (e~ ns+7,5,=0 . (11)

Pressure cancels out of the stress tensor term because it acts normal to the surface. In
addition, invoking continuity between the tangential components of liquid and vapor velocity, that is:

V-V s5,=0, (12)
yields an equation for the tangential stress balance:
(t; —r(v))n,s, YiSi s (13)
where

(T =t n s =pu[(V, +V,) - LV n s,

and f, is the ratio of vapor viscosity to liquid viscosity. An important aspect of the one-sided model
is the assumption of a vanishingly small f, (reference 14) which removes vapor velocity from
equation (13) and yields:
rljn]—Y,i . (14)
The normal momentum/stress balance is obtained by projecting equation (10) onto the normal
vector n;.
JV~Vn,— (6~ nn+yx=0 . (15)

The interfacial momentum flux is expressed as a function of j and the ratio of liquid density to
vapor density f, (= p/p(") by:

-2
JVE =55 (1) . (16)

In the case of evaporation, equation (16) represents the recoil force caused by vapor ejection
from the surface. Because f, > 1, the momentum of the vapor is higher than that of the liquid.
Consequently, the momentum change and force exerted on the interface will always point into the
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liquid. Equation (16) also represents the force resulting from condensation and vapor impingement
on the surface. Because the vapor and liquid momentum vectors for this case point in a direction
opposite of evaporation, the resultant force also points into the liquid. The independence of the recoil
force to the direction of mass transfer is reflected by the squaring of j in equation (16). Actually, the
direction only depends on the value of f,,, which for all liquid/vapor systems is greater than unity.

The stress tensor contribution in equation (15) is expressed in terms of pressure and viscous
stress by:

(-0 nn;=—Py+P—P)+(1 1) njn, . (17)
One again refers to the definition of the difference between the liquid and vapor viscous
stress tensors and applies the one-sided assumption, f, = 0, to remove vapor velocity. This yields:

(1,1—11(‘;,))’1]”’:2#‘/"1’1]”‘ . (18)
Substitution of equations (16) to (18) into the original equation for normal stress, equation
(15), yields an expression for surface curvature that accounts for pressure, vapor recoil, and viscous

stress:
-2

vk =(PY-P,-P,) + JF (-1 +2uV,nn; . (19)

The third type of jump condition relates the transfer of latent heat and kinetic energy to the
temperature gradient normal to the meniscus. In subsequent comparisons between thermocapillary
and interfacial convection, it is necessary to impose equivalent heat transfer conditions regardless of
the rate of mass transfer normal to the surface. That is, a method of accounting for convective energy
transport in the case of pure thermocapillary flow is required. This is accomplished by expressing the
energy jump in the general form:

q+kTin~kOT¥n)=0 . (20)

The one-sided approximation is applied by factoring out k and assuming that the ratio k(")/k
— 0.14 This yields the simplified relation:

g+kT;n;=0 . 2n

g represents the local interfacial heat flux. One can define g in a general way by expressing it
in terms of Newton’s law of cooling, that is:

q=hT-T,) . (22)

q can also be represented more specifically as the sum of latent heat and kinetic energy
transported across the interface, that is:

0= i {L+ L)l - Lyl -
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Note that viscous energy dissipation due to surface stress is ignored. The velocity differences
in equation (23) can also be replaced by the definition for mass flux in equation (7). Substitution of
these definitions for g into equation (21) yields two forms of the energy boundary condition, namely:

kﬂi+h(T—T0) =0, (24)
and

-2
KT +j {L + 2—1,;7 (1;,2—1)} =0 . (25)

Additional constitutive relations are required to account for the thermal dependency of surface
tension and the sensitivity of mass flux to temperature along the surface. An equation of state for
surface tension is obtained by treating yas a monotonically decreasing function of temperature.

y=7,-| |- 26)

7 is the surface tension at the minimum cavity temperature 7. This formulation is typically
used since dy/dT is negative for nearly all common liquids.

To relate mass flux to temperature, i.e., characterize the mechanism for evaporation and
condensation, one begins with the well-known Hertz-Knudsen relation® which relates mass flux to
the difference between the density of the vapor undergoing phase change p(v) and the density of the
surrounding vapor po(¥).

R.T 12

p(¥) is the vapor density at the liquid surface temperature 7, while po(¥) is the vapor density at
To. e is the accommodation coefficient and is a factor representing the resistance to mass transfer.
For a surface free from contaminants, it is assumed to be equal to 1. Other variables in equation (27)
include the vapor molecular weight My and universal gas constant R,. It is assumed that the
saturation density and pressure are solely functions of temperature. Treating density as a linear
function of temperature allows one to express the density difference as:

ap
pV-p§ = —gjé— (T-Ty . (28)
From the chain rule:
op _dpd 4P
=T - 9P dT - (29)

Assuming a perfect gas equation of state yields an expression for dpo(V/oP:

op _ My
3P —m , (30)
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dP/dT in equation (29) is simplified by applying the Clapyeron equation and assuming that f, >> 1.
This yields:
_d.B = L_pE . (3 1)

Substitution of equations (28) to (31) into equation (27) yields a final relation for mass flux in
terms of the temperature difference between the liquid surface and vapor.

. epQL [ My \1?
=2 () T (32)

The remaining boundary conditions are Dirichlet-type and, apart from scaling, require no
further simplification.

D. Scaling

One now nondimensionalizes and simplifies the governing equations and boundary conditions
by applying different scaling factors. Length is scaled to the pore width D, and viscous scales are
chosen for time, velocity, stress, pressure, and mass flux,14 that is:

2
x;=Dx; , Vi=%vt" ; t='DTt* ,
V2 . V2
8i=aio . oy=E5 0} P=Tr Pt G
_pv.
j=pr

These scales are appropriate for a system in which viscosity and surface tension influence the
flowfield. They should also apply in instances where the domain is nonisothermal and interfacial
mass transfer is not too intense. For temperature, one scales the difference T-Ty to the maximum
difference in the cavity IAT1 = IT,-Typl. This yields the relationship:

T =T*ATI+T, . (34)
The appeal in using this definition is that the scaled vapor temperature assumes the same
value of O for both superheating and subcooling. With superheating the side wall temperature is fixed

at T* = 1, while with subcooling, it is held at T* = -1.

Applying the scaling factors in equations (33) and (34) yields the following dimensionless
forms of the governing equations:
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V=0, (35)

5t

aav* V' Vi+Pi—15;~GraT*=0, (36)
oT*  yrrt_ L po_
S tViTi-p, Ti=0- (37

The two dimensionless parameters arising from the scaling are:

3
Gr= -D—gT'BZ"}-T—' , Grashoff number (38)
Pr =% ) Prandtl number (39)

Scaling of the constitutive relations for mass flux and surface tension are critical to
formulating a working set of equations. The constitutive equation for mass flux is scaled to
temperature by substituting equation (34) into equation (32) to yield:

J*-};’: : (40)
where
fpv 27tR
DIATI\ M, | (41)

The interfacial resistance Rs defines the degree of nonequilibrium (i.e., difference in state
between the liquid and vapor) that can be maintained per unit mass undergoing phase change at a
volatile interface. Rs = 0 corresponds to the quasi-equilibrium limit, where the interfacial temperature
is constant and equal to the saturation value, T* = 0. 1/Rs = 0 corresponds to the nonvolatile case in
which the evaporation mass flux j* is zero.

A dimensionless equation of state for surface tension is obtained by substituting equation
(34) into equation (26). This yields two equations which may be expressed in the single general

form as:
yY=17, (1-CrT*) (42)

where
4 | IAT]

5
Cr=""m— 7

(43)

T* is a corrected scaled temperature whose value depends on the maximum and minimum
temperature in the cavity. For superheating (T, = Ty and T} = Tp), T* = T*, while for subcooling (T}
=Toand T} = Ty), T* = T* + 1. The Crispation number Cr denotes the sensitivity of surface tension
to temperature. Because it is quite low for most ordinary fluids, several studies have justified neglect
of surface deformation by assuming a very small Cr. Although several researchers, such as Sen and
Davis24 and Zebib et al.,27 refer to Cr as the Capillary number, the terminology of Strani et al.26 will
be followed.
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In scaling the normal stress balance, one sets the hydrostatic pressure at the base of the
cavity to a reference value of 0. The hydrostatic pressure along the meniscus Pj can then be
expressed as a function of y(%):

Py=-pgy® . (44)

P, is negative because the body force acceleration points in the —xy-direction. Substituting
equations (40), (42), and (44) into equation (19), and rearranging terms yields the dimensionless
equation for surface curvature:

e By®"—Ca(P;-P®"y + ViT*+2CaV;jn n,

4
1-CrT* (43)
Previously undefined parameters arising from this scaling are:

2

Bo= B—‘%— , static Bond number (46)
pv? :

Ca="—%, Capillary number 47)

7D

Ca(f,-1
r= —;fﬂz—l . recoil parameter (48)

N

Ca denotes the force ratio between viscosity and surface tension. Although it appears to have
a significant effect on surface geometry, Ca, like Cr, is typically small, particularly for high surface
tension liquids. Note that this dimensionless grouping has previously been referred to as the
Ohnesorge number Ok by Cuvilear and Driessen2 and the nondimensional surface tension number by
other researchers.

For the shear-stress condition, one expands the surface tension gradient by applying the
chain rule:

dy oT (49)

y'i - aT ax,- )
Substituting equation (49) into equation (14) and scaling yields:

T:jnjz—ReT; . (50)

Re is the surface tension Reynolds number and is defined as:

_|zr|par!
pv:i

51

Since the normal gradients of Vy* and V,* are interdependent, the condition represented by
equation (50) can only be applied in one direction. That is, the stress conditions in both directions

are mutually satisfied by applying the Neumann condition to either V1 * or Vo *. If equation (50) is
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applied to Vy*, a Dirichlet condition for V,* is obtained by substituting equation (7) into equation

(32) and scaling terms:
* * *
= i) 5

The equation used to specify velocity along boundary 2, equation (9), is also scaled to yield:

- f V' dl* = f V-V ndre 4 252 (53)
I Iy

The result of scaling the two jump energy equations, equations (24) and (25), can be
expressed as the general relationship:

T/n;=-BiT* . (54)

Bi is the effective Biot number of the liquid volume. For the case in which heat transfer is
expressed in terms of Newton's law of cooling, Bi is defined as the convective Biot number, namely:

Bi=Bi =12 (55)

For the case involving latent heat and kinetic energy transport, Bi consists of the sum:

Bi=Bi,+Bi, T , (56)
Bin=pip . (57)
where
(5D
fhe = 2:Rs3E ’ (58)
E=k—;‘% , (59)
and
2
A=k (60)

The rate of latent heat transfer relative to heat conduction is represented by the mass
transfer Biot number Biy,. In a manner similar to Bi,, the value of Bi,, indicates whether heat transfer

is limited by conduction within the liquid (Bi,, > 1) or mass transfer at the interface (Bipy, < 1).

The influence of mass transfer and phase change on the interfacial temperature distribution
can also be viewed in terms of the reciprocal product, RsE. The parameter E represents the ratio
between the viscous and evaporation/condensation time scales (i.e., D2/v and pD2L/(KIATY),
respectively). Although it applies to both modes of interfacial transfer, E has been termed the
evaporation number by Burelbach et al.,!4 and it is indicative of the rate of phase change relative to
momentum diffusion in the cavity.

A large value of E signifies a high rate of evaporation and shorter timescale relative to
viscous effects. This is comparable to having a high ratio between the thermal conductivity and
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convective heat transfer coefficient for Bic. In either case, raising k relative to latent heat transport in
equation (57) or k in equation (55) means that interfacial convection progressively becomes the rate
limiting process for heat transfer.

Interfacial resistance can either augment or restrict the effect of phase change on rate limiting
heat transfer processes. Rs dictates the rate at which vaporized liquid or condensed vapor is ejected
from or deposited onto the interface. Hence a higher rate, reflected by lower Rs, would suppress the
influence of phase change on the temperature profile. That is, the rate limiting effect of phase change
relative to conduction is reduced by increasing the mass flowrate into or out of the cavity. This is
reflected by a higher value of Biot number Biy,.

The kinetic energy Biot number Big T*2 represents the rate of kinetic energy transfer relative
to conduction at the surface. Its contribution to the energy jump balance is evaluated by factoring out
Bi, from equation (56), that is:

Y Blke *2 (61)
Bl—Ble(l-FB—ie‘T )

Note that A, which arises in the denominator of Bi./Bix. = (f;2—1)/(2AR,2), is extremely large
for most fluids. Consequently, we can safely assume that Bi/Big = 0. This conveniently enables one
to use the same linear relationship, equation (54), for both forms of the boundary 4 energy equation.
One now has two definitions for the Biot number at the surface. Both of these are equivalent in terms
of dictating temperature distribution along the interface.

Scaling the governing equations and boundary conditions has yielded 13 dimensionless
groupings based on 14 thermophysical properties and a contact angle constraint on either side wall.
Two of the groupings, Vr and Big, are immediately recognized as combinations of the other 11. Five
of these remaining 11 (i.e., Gr, Re, Ca, Bo, and Cr) represent ratios between the five principal modes
of force application, namely viscous stress, surface tension, gravity, thermocapillarity, and buoyancy.
Scaling considerations show that only four of these ratios are mutually independent and compatible
with a consistently defined problem. Note that Ca = Cr/Re, which reduces the number of
dimensionless groupings to 10.

All of the remaining dimensionless force groups (i.e., Gr, Re, Bo, and Cr) are dependent on
cavity width. Although the relationship between thermocapillarity and buoyancy can be indirectly
expressed by the relative magnitudes of Re and Gr, no parameter has been defined that directly
relates these effects on purely thermophysical terms, i.e., as a function of their relative sensitivities
to temperature. This is possible because both are expressed as gradients with respect to
temperature. The so-called thermal response ratio is defined:

_ Y.
A =5yt (62)

which relates the thermal sensitivity of surface tension to that of density. It is appealing to use 4,
because, like Pr, it is a physical property of the fluid and independent of imposed temperatures and

scaling dimensions. For most Newtonian fluids, it ranges between 0.1 to 0.01, and can be related to
the other dimensionless parameters by:

Gr=BoReA . (63)
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It was decided to replace Gr with equation (63) in the momentum equation because in most
cases thermocapillarity predominates fluid motion. Note that the group ABo = Boy is sometimes
referred to as the dynamic Bond number.2! Also, to eliminate confusion between Re and the well-
known parameter relating viscous and inertial effects, Re is replaced with the Marangoni number Ma,
defined as:

Ma=RePr . (64)

E. Summary

The theoretical development has produced a mathematical model consisting of the governing
equations and boundary conditions summarized in table 1. Of the five independent variables in this
system of equations, only pressure lacks any specific boundary conditions. Section IV will discuss
how the selected solution approach obviates the need for a pressure boundary condition at more than
two points.

Because the cavity is symmetric, only two conditions are needed to define surface geometry.
One is the contact angle constraint and the other is the requirement that the distance from the
contact line to the cavity base be equivalent to the width.

In the process of scaling these equations, we also obtained a variety of dimensionless
groupings. The ones derived in this chapter and those referred to in other sections of the text are
presented in table 2.

IV. NUMERICAL METHOD

A. Introduction

Except for the complications introduced by the existence of an unknown free boundary, the
aforementioned problem can be readily solved using various numerical techniques. The finite element
method has been selected because of its strength in handling unstructured grid domains and free
boundaries. Although it is possible to structure a numerical solution so that the surface is
determined simultaneously with V;, P4, and T, this approach is memory-intensive and requires
manipulation of an extremely large sparse coefficient matrix. The preferred approach?® 35 relaxes the
normal-stress boundary condition in equation (45) and calculates surface position y(*) in an jteration
loop outside the steady-state flowfield solution.

Note that the * notation which signified scaled parameters in section III has been dropped.
Unless specified otherwise, all variable and parameters references in the remaining sections pertain
to their dimensionless form.

B. Finite Element Equations

Finite element equations for the flow variables are obtained by applying the Galerkin method
to derive weak forms of the scaled momentum and energy equations, equations (34) and (35),
respectively. These equations are discretized with respect to time via a semi-implicit Crank-
Nicolson scheme, while continuity, equation (35), is enforced using a SIMPLER-type algorithm
similar to the finite volume-based technique of Patankar et al.>0
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Table 1. Summary of governing equations and boundary conditions.

Domain Equations Description
Vii=0 Continuity equation (equation (35)). Used with
momentum to solve velocity and pressure.

ov; _ Momentum equation (equation (36)). Used with

ot ViVt 4= Ty,;~0ra;l =0 continuity to solve velocity and pressure.

T yvr_Lr o Energy equation (equation (37)). Used to solve

ot S Pri temperature.
Boy®—Ca(P,—P%) Equation for meniscus curvature (equation (45)). Used

K= ﬁ Y 2 ¢ to solve y(& when x replaced by expression for
+VrT*+2CaV, jnjn; curvature in 2-D Cartesian frame.

Boundary 1 Conditions Description

Vi=0 Impermeability

V,=0 No-slip

T=T Isothermal side wall. T = 1 (superheating), 71 = -1

(subcooling).

Boundary 2 Conditions

Description

Vi=0 Parallel flow

1 T Uniform flow (equation (53)). Total flowrate matches
‘/2 -_— 'I-\_ F dr4 .

2 Jr, I&s value across meniscus.

T=T, Isothermal. Same temperature as side walls.
Boundary 3 Conditions Description
Vi=0 Impermeability
Vo =0 No-slip .
T=T; Isothermal side wall. T} = 1 (superheating), 77 = -1

(subcooling).

Boundary 4 Conditions

Description

T n;=—ReT,; Thermocapillary stress condition (equation (50)).
V,= ’_11_ (% ~Vin 1) Required V7 needed to satisfy meniscus flux condition
2 (equation (52)).
Tin; = -BiT Robin energy condition (equation (54))
y(9) =1 Surface Dirichlet condition @ x; = 0 and 1
dy® Surface Neumann condition @ x; =0 and 1
e =tan (7/2-w)
1

Note: * notation dropped. All variables expressed in dimensionless form.
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Table 2. Summary of dimensionless groupings.

Group Name Description Formula
Bi Biot number General reference for either Bi; or Biyy, Either Bi, or Bij,
(equation (54))
Bi; | Convective Biot Ratio of effective surface heat transfer _hD
number convection to conduction (equation (35)) k
Bi,, | Mass Transfer Biot | Ratio of latent heat transport to -
number conduction (equation (57)) RsE
Bixe | Kinetic energy Biot | Ratio of_ kinetic energy transport to (1;,2_1)
number conduction (equation (58)) = SARCE
Bo Bond number Ratio of gravitational to surface tension pgD?
forces (equation (46)) =Ty
Bog | Dynamic Bond Ratio of buoy_ancy to thermocapillary gDzap/aT
number forces (equation (63)) —W
, = BoA
Ca | Capillary number | Ratio of viscous to surface tension forces | pv?
(equation (47)) =’ﬁ
=Cr/Re
Cr Crispation number | Ratio of thermocapillary to surface 119y
tension forces (equation (43)) =y §'fl IATI
= CaRe
E Evaporation Ratio between viscous and evaporation/ | _ KIAT]
number condensation time scales (equation (59)) pvL
fo Density ratio Ratio of liquid to vapor density (equation | =p/p®
(16))
Gr Grashoff number Ratio of buoyancy to viscous forces D3g BIATI
(equation (38)) =T,
= BoARe
A Thermal response | Ratio of density to surface tension _ Y opldT
ratio thermal sensitivities (equation (62)) =7 P yT!
A Dimensionless Latent heat scaled according to viscous |_ D’L
| latent heat scales (equation (60)) o2
Ma | Marangoni number |Ratio of thermocapillary stress force to oy
viscous forces (equation (64)) _ QTID IATI
ue
= RePr
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Table 2. Summary of dimensionless groupings (continued).

Group Name Description Formula
On Ohnesorge number |Ratio of viscous to surface tension 1A
forces?9 - (75)
=vVCa
Pr Prandtl number Ratio of momentum to thermal diffusivity |= Vi
(equation (39))
Re Surface tension Ratio of thermocapillary to viscous forces oy | DIAT]
Reynolds number | (equation (51)) _|oT
=
= Ma/Pr
Rs Interfacial Degree of nonequilibrium between vapor j;,vTom ( 27R, i)
resistance and liquid on free surface (equation (41)) | = ZpIAT] \ 77, )
Sv Viscous stress Ratio of normal velocity gradient to = Br/Rs
parameter temperature at surface (equation (8))
Vr | Recoil parameter | Ratio of surface momentum change to _ Ca(f,-1)
surface tension (equation (48)) T Rs?

SIMPLER requires three additional Galerkin equations for the pressure and velocity
corrections P4’ and V', respectively. These equations are derived from equations (35) and (36),
which for two-dimensions, represent a system consisting of three equations and three unknowns.
Because equation (36) is actually two equations, it is possible to derive velocity estimates V;¢ with
an arbitrary value of pressure P42 which may not satisfy continuity. This implies the existence of
corrections which, when added to the estimated values, mutually satisfy equations (35) and (36),
where V; = V;"+ V;2 and Py = P, + P40. Substituting these expressions into equation (36) and
subtracting the momentum equation based on estimated values of pressure and velocity yields an
expression for V;'in terms of V;9, P, and P4"

aVi' ‘y7o 74 oy’ ! !

By approximating dV;"/dt as a finite difference and assuming that Vi at the previous time
step n equals zero, one finds that 9V; /ot = V;/As. Substituting this approximation into equation (65)
yields a quasi-explicit expression for V;" As an initial estimate, all second-order and nonlinear terms
are neglected, yielding:

V, =-AtP;; . (66)
The continuity constraint is applied by substituting the sum of equation (66) and V; into

equation (35), and rearranging terms to yield an expression for the pressure correction that enforces
continuity:

P‘;.i"=—li . (67)
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With SIMPLER, a more accurate P, is obtained prior to the pressure update. This improved
estimate is derived by invoking continuity with the complete equation for V;' Substituting
V; = V' + V,0 into the continuity equation as before yields the more accurate expression:

. V"
Pd,u— v 2Vt}V§x V V ‘/le]l+‘/lﬂl '
(68)
The pressure correction calculated from equation (68) is added to the previous estimate P0
and used in the next calculation of V;2. Use of SIMPLER increases the total number of equations and
unknowns from four to six. Note that P4 is no longer a dependent variable in the true sense since it
represents a cumulative sum of P;' estimates. Also, equations (67) and (68) count as only one

equation.

Algebraic finite element equations for these six variables are obtained by applying the
Galerkin method.5! First, the momentum, energy, and correction equations are expressed in residual

form:

M= % +V,V, 4P, ~7;~Gra,T , momentum (69)
ek aa_{ +V,T, - }}r T; energy (70)
eMl=p, . — Yii P4 correction (initial) (71)

d.ii At d
eV =V, +ArP,; , V; correction (72)

o Vi
=Pd.ii +ZVUVJI+VVU:+VUV}| Vt_;ﬂ .

P, correction (final) (73)
Note, the o-superscript has been eliminated by consolidating the definition of estimated

velocity and pressure, that is V; = V;¢ and P4 = P,0. Weak forms of the governing differential

equations Ey are derived by integrating the residuals € over the spatial £ and temporal ¢ domains:

1 1
E,= jo U(p) fnwaasdodw= fo U(g) Sodp =0 . (74)

Prior to each integration, the residual is multiplied by test functions that characterize the
dependent variable’s spatial variance between adjacent nodes Wy and its change between
successive temporal stations U(¢). Integration of the residuals in equations (69) to (73) over Q
yields the corresponding equations:

si=] W (S5 4V, 4 Py=GrTa) a2 [ W [ whwvpda- | Wiepar . as)
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e[dT 1 E 1 E
Sa= fn Wa (g + VjT,j) aQ+ 5 L W T 42~ p; J; WeTn;dl (76)

SAPT = f WAPLp . dQ - f WAPp’ n.dT +-L f WAPY,.4Q (77)
o % r ' At Jo ’

SAY _ f WAY (V, + AP )dQ | (78)
Q

’ * ’ ‘/ll ’ ’ ’ ’ ’
§4P2 = L WAPP, dQ - fr WP, indT + J'Q W2 (?I} -2V, Vi~ ViV ViVt l,,) Q. (19

The viscous stress gradient in equation (69) is integrated by parts to yield a surface integral
in equation (75) that represents imposed stress along the meniscus. Applying the same approach to
equation (70), T j; is integrated by parts to obtain a surface integral in equation (76) that specifies
the temperature gradient normal to the boundary. In both pressure correction residuals, equations
(77) and (79), the equation order is reduced by integrating P;’; by parts, and a surface integral is
obtained by containing the normal gradient of P,;" Since P;' = 0 throughout Q to satisfy both
continuity and momentum, P,’; must vanish along all boundaries. Note that no Neumann tensor
arises in equation (78) from integration of equation (72).

Each flow variable and its associated gradient in equations (75) to (79) are discretized as a
product of the nodal value and an interpolation function that characterizes its variance over the
element domain.

Vi=®@pVp o Vi =Pp,Vai s
P=HpPﬁ N P,,v=I'Ip’,~Pﬂ N (80)

T-—-epT/g . T,i=0'3‘,~T'3 .

By decoupling meniscus geometry from the transient solution of V;, P4, and T, grid geometry
can be treated as static with respect to the flowfield, and the interpolation functions depend solely on
x;. Note that a coupled and transient determination of meniscus geometry would require an
accounting of grid convection due to interfacial deformation.

An example of a typical finite element domain consisting of 25 by 20 = 500 quadrilateral
elements is shown in figure 3.

The different nodal configurations for these elements are illustrated in figure 6. The global
coordinates x; are assumed to vary quadratically with respect to the natural coordinate frame & (5
and & (1) centered at each element. For incompressible problems of this type, the traditional
approach is to employ interpolation functions for velocity (®g) and temperature (6p) that are one
order higher than pressure (I1p).
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To accommodate the V;V;'j term in the SIMPLER pressure update, equation (79), one
follows the approach of other researchers and employs a quadratic variance for ®g and 6, and a
linear variation for ITg. This worked well in all regions except the meniscus interline. Here,
thermocapillary stress and interfacial mass transport are greatest and cause substantial pressure
gradients. Unless the corner elements are made sufficiently small, this abrupt change in pressure is
inaccurately applied across the entire element and over-influences the velocities at adjoining nodes.
A similar problem with temperature was encountered when analyzing high Bi (2102). In this case,
the second-order function is incapable of handling steep temperature gradients near the wall.

To correct this problem, more complex formulations for the pressure and temperature
interpolations are used. Computer storage requirements are reduced and physical consistency is
maintained between Py and V; by employing higher order interpolations in the corner and mixed order
functions in the side wall and meniscus regions. This enables application of the standard first- and
second-order formulations in the interior, but requires the seven element configurations shown in
figure 6. A summary of the derivation of interpolation functions for these elements is given in
appendix A.

For pressure, a quadratic approximation (i.e., type 3 in figure 6) is applied at the two corner
elements, which have a nine-node element domain and coincide with the velocity interpolation. In the
interior, however, a first-order variation (type 1) is retained to preserve the physical relationship
between pressure and velocity. This approach requires the use of mixed order elements (types 2a
and 2b) along the meniscus and side walls to ensure consistency between the number of local node
contributions and global node equations. As detailed in appendix A, the type 2a function is applied
along the meniscus, and is formulated at each of the six local nodes from the first and second-order
Lagrange polynomials in the &; and &, directions, respectively. Alternatively, the type 2b
interpolation is applied along the side walls, and is the product of the second and first-order
Lagrange polynomials in the &; and &, directions, respectively.

A similar approach is taken with temperature. Originally, third-order and mixed third/second-
order functions were investigated, but difficulties with convergence along the meniscus were
encountered. Use of fourth and combined fourth/second-order interpolations, however, proved
successful, and closely followed the methodology outlined for pressure.

The W, test functions in equations (75) to (79) assume the same order as the interpolation
associated with each equation's dependent parameter. Therefore, WM = WAV = @, WE = 64, and
WAP1 — W AP2 - T1,. Substitution of these definitions into equations (75) to (79) yields general
expressions for the spatial residuals:

AV g,
SM =Ml a_tﬁ + (M2, V, A MV M 35 Vs i+ Mg Pp—GraMigTs Gl (81)
SE=EL, 28 (52 v+ L E3)T, GE 82
a= aﬁ7+( arBiVri t Py aﬂ) p=Ga (82)
4P = PLoP; +-A1—tP02, Vi » (83)
S&Y =MV + At Mo Py (84)
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Sa™ = PagPj + 37 PagiVoi-Pas V@Vt Vi)—Pipy; Vo,V » (83)

At
where
E},ﬁ=fneaeﬁdn : M,,’,,,:fQ(Dad)de , (86)
a)’ﬁj fB @,0p,4Q arﬂj fq) D, Dp;dQ2,
Egﬂ=fnea,jeﬂ,jdg , M= [ @050,
=B, fe T;ndl , M;j,;,.=fnd>a,jd>p.id9,
Ply= fgna,,.n,j,,.dn , M35 = fﬂdaan,,,,.dg ,
Plp= [ M0, Mip= [ @.6,d0.
Plsyi= frl «Dp D, dQ Gﬁ:fréarwjdr.
Plsi= f M,05P,,dQ ,

The integral associated with V;'; in equation (79) is ignored, since it is impossible to
discretize a third-order derivative using a second-order interpolation function. However, neglecting
this term will only reduce the rate of convergence and should not alter the final solution since V;' — 0
near the proper value of pressure. All tensor values, except G, and G,£, are calculated using
Gaussian quadrature in two dimensions. Because of the fourth-order interpolation in the E-tensor
forms, a five-point procedure is employed.

The momentum and energy spatial residuals equations (81) and (82) are discretized with
respect to time by integrating the product of U(¢) and S, in equation (74) over 0 < ¢ < 1. @ is the
normalized time increment and is defined as ¢ = t/Ar. Each nodal value of velocity Vg; and
temperature Tpg (which are both generally expressed as Zp) is discretized between the temporal
stations, n and n+1 by Zg = 8,Zg"+0y,1Zgn+1, where 9, = 1-¢ and ¥,,; = ¢. This definition yields
the dependent variable forms 0Zg/dt = (Zgnr+1-Zgn)IAt, Zg = (1-@)Zpn+@Zgn+! and Z,Zpg =
(1-@)ZynZpgn+@pZyn+1Zgn+1. Note that Vo, Vg and Vi Tg are assumed to vary linearly with time,
which is reasonable if the time step is small. These forms are substituted into equations (81) and
(82). After integrating over @, one divides both equations by Jo!U(@)de and defines a temporal
parameter ¢ such that:
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1
f U(p)pde
= (87)

[ veone

This yields the following linearized algebraic equations for velocity and temperature at n+1:

M2 .Vn'+1 M2 .an (I_C)Vn
MLUEA | T BT Nymi S gl oA AP v ArM 2 pi
af C (+M3p Bi ap ( :) +M;ﬂ Bi ajp +Cvélj+]
1-OTg
_AtMgﬁ,-Pﬁ+AtGra,~M§ﬁAaﬁ(i Cfif)m@ﬁ : (88)
B
E2 yntl E2 yr
Elg+lAr “;”’ Z’ T3 = |ELs—(1-0)At "{”’ Z’ Tj+AtGE (89)
+-PTrEaI3 +f;Ea/3

To employ the Crank-Nicholson method, one sets U(¢) = 1 which yields ¢ = 1/2. Finite
element equations for P4’ and V;' are obtained by setting the spatial residuals in equations (83) and

(84) equal to zero.

The surface stress condition is embodied in the Neumann tensor G¥, and is applied along
the elements adjoining surface 4 (i.e., the corner and meniscus regions in figure 5). Note that the
velocities on all other boundaries are Dirichlet-type. A finite element expression for GoiM is
obtained by substituting the tangential stress condition, equation (50), into the definition of GgM in
equation (36):

G™ =_Re J' &,T 4T . (90)
r

There are several ways to discretize the temperature gradient along the boundary. One is to
assume 7T ;= B*ﬁ,,-TB and treat B*ﬂ as a one-dimensional, second-order interpolation along the
element surface. The main advantage with this is that the integral frd>*a0*ﬁ,i is an explicit function
of normalized surface position &, surface length /(¢ and orientation s;. This approach works well if the
surface is horizontal or vertical, and the gradient acts in either the x1- or x2-direction. With a curved
interface considerable error is introduced because only three temperature values are used to express
the gradient in two directions. An alternative approach is to treat 0* B,i as two-dimensional and
include contributions from all element nodes. The integration is carried out while holding the edge
corresponding to & =1 = 1 constant. First, the discretized form of equation (90) is expressed as a
sum of individual element contributions:

E
Gl =—Re T QW T8 e , O1)

35



where
Qb= rmé};’e ©@4re (92)

E,4 is the number of elements along surface 4, and T¢)y, are local node values of temperature.
M is summed over all local nodes. The surface test function ®*(®y is expressed as second-order
with respect to &:

EE-1)
&9 =2[-2¢€%1)
EE+)

(93)

The surface differential dT'(¢) is also expressed in terms of & by dI'(e) =(I(€)/2)d&. Note that
6*(eny; is merely the derivative of the temperature interpolation 6(€)y; at n = 1.

09:=09),.. - (94)
Equation (92) can now be expressed in the form:

©
=5 f ()02 ,.d¢ - (95)

The integration in equation (95) is performed most efficiently by means of one-dimensional
Gaussian quadrature where the expression is approximated as:

}m,-=%e),>; w,dE )0 2iE =) . (96)

w, is the weight coefficient corresponding to the point index r. ®*(©)y(&,) and &);(&,,n=1)
denote the abscissac evaluated at each of the n Gaussian points. For this summation, a five-point
quadrature is again employed, i.e., n = 5, since the order of variation for temperature is fourth-order
in the corners and surface.

Surface integrals are also used to balance flow through the cavity and specify the Dirichlet
condition for V, along surface 2. One takes the approach of relaxing the normal stress boundary
condition and holding the surface fixed V;(®) = 0. Integration of the scaled expression for mass flux,
equation (40), over surface 4 yields the scaled total mass/volumetric flow J (i.e., throughput) in the
pore:

=1
J= Rs Jr, Tdr . 97N

J is approximated by descritizing T in terms of 6*(€)ps and expressing the integral as a
summation over surface 4 element contributions, that is:

36



E
7=k 34Ty, (98)
where
0=, 64ar® .
r(t)

Along the corner elements, a fourth-order interpolation is applied and the summation occurs
over all five surface values of temperature. On the remaining meniscus, a second-order variation is
applied to yield:

Q 90 [7 32 12 32 717 Fourth-Order Variation  (99)

Second-Order Variation
The rate in equation (97) is set equal to the flux integral on surface 2 by:

J=J. Von,dll . (100)
[

Recall that V; = 0, consistent with the assumption of parallel flow. In addition, V, is treated
as a constant (uniform flow) but is assumed to vanish at x; = 0 and 1 (no-slip). Noting that n, =1,

V; is discretized in terms of ®*(e)y, and a second expression for J is obtained.

J=-éx—6l—vl[10+6(E2—2)] , (101)

where Ax; represents the individual element lengths along surface 2, and V; is the velocity at each
node. Note that E, is the number of elements along surface 2. Setting equation (101) equal to
equation (98) yields an expression for V, which is treated as the Dirichlet boundary condition at each
temperature iteration.

___ 3
Vo= e - (102)

The Robin boundary condition for temperature, equation (54), is applied using the definition of
G.E in equation (86). The temperature gradient in G, is replaced with equation (54) to yield:

Gﬁ:-%f @ ,Tdrl . (103)

Temperature is again discretized by 6% (&) to yield a finite element expression for the
integral:

. E
b Tdly= 3 84T 8w (104)
4
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where
vu= [ 828 are. (105)

Removing the temperature gradient in equation (103) eliminates the need to apply an
interpolation function based on all element node contributions. Rather, a second- and fourth-order
interpolations are applied with respect to the naturalized coordinate &, coincident with the surface.
Integration of the interpolation product in equation (105) then yields the matrices:

4

! 4 2 -1
S=il - 16 21, second-order (106)
300 - 4

292 296 -174 56 -29
-1,792 -384 256 56

* 1€
Qi = - —1872 -384 -174
56701 _ 721792 296
- - - - 29

fourth-order

C. Free Surface Solution

With moderate to large contact angles (i.e., @ = 15°-90), y(*) can be easily calculated using a
one-dimensional finite difference or finite element representation of equation (45). Such an approach
is difficult with small contact angles because of the high gradient (Neumann condition) at the wall.
An alternative is to transform equation (45) into an integral equation by treating & and surface
position s as dependent and independent variables, respectively. This approach has been applied to
purely hydrostatic configurations,’2 53 and can be extended to include the effects of dynamic pressure,
velocity, and interfacial temperature.

First, a new coordinate system (x',y") centered at the base of the meniscus where x’ = x;-0.5
and y' = y(9—yo(9 is defined. o is related to y(®) by y(s) = yo{s) + fo* an odx’ and y(9), = tan ¢. These
definitions are substituted into equation (45) to obtain:

x
£ C+Bo f tan ordy’
0

K= 5 , (107)
T = Boy®+Ca(PV-P H! T242V, 108
= Oy(g‘.' a( - dO)"'ET 0+ Ol')jnjni y ( )
where
Hh-D
C=Ca|AP;- —;«_2 AT H-2AV pnn,|
D=CT ,
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and
AP;=P,~Py ,

ATH=T*T¢ ,
AV, )=V, ~ Vo) -

C and D are derived from the steady-state flowfield solution and are expressed as functions
of x'. Between the surface nodes at which flowfield data is available, T, V;, and P4 in equation (108)
are interpolated using the same order as their element-level variance. Equation (107) is expressed
in a form where £ corresponds to the curvature at the meniscus center-line. Consequently, the
curvature at other points along the surface is a function of Z and the change in pressure, temperature
and velocity relative to the center-line values, Ty, Vp;, and Pg.

For a two-dimensional meniscus, only the radius of curvature x in the x’-y’ plane is con-
sidered. The well-known expression for x in this case>? is:

tE )’,(de 4 {14y} . (109)

Upon substitution with the expressions for y(s) and y($ ,, equation (109) becomes
K = cos a(da/dx). For moderate to large contact angles, this equation can be used with equation
(107) to solve « versus x'using a combined finite difference-integral expression. Convergence
problems occur at low contact angles due to the rapid increase in the tangent term near the wall. This
problem is corrected by using the surface distance s, rather than x’, as the independent variable. s is
introduced into the formulation by noting that dx”/ds = cos & and dy’/ds = sin . Substituting these
expressions into the two a-dependent terms in equation (107) yields x = do/ds and on tan adx’' =

fossin ads. The transformed expression for equation (107) becomes:

5
2-C +B0J. sin ads

a_(;cz - _ (110)

Equation (110) is expressed in numerical form by applying difference and integral approxima-
tions for do/ds and fo°® sin ads, respectively. The entire surface extending from x'=-0.5 to x' = 0.5 is
solved by applying the shooting method to each half of the meniscus. The objective is to determine a
X that yields the specified contact angle w at Ix'l = 0.5. At x’ =0, & = 0 is set, a value of X is
assumed, and o; is calculated at successive steps along the contour until Ix'l 2 0.5. A first-order
approximation for do/ds suffices in flat regions of the meniscus, but becomes less accurate towards
the walls. Computational precision in this region is improved by making the step size As = 5;,—s;.1
extremely small (~10-4) and by applying Simpson’s rule to obtain second-order approximations of
the derivative and integral. The first and second-order accurate forms of da/ds are:

do  &im%iy irst- 111
5 e first-order (111)
dor _ 30 ~40 1+,

% A5 , second-order
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where o; and o;_; are the values of a at s; and s;_;, respectively. Also, a backward difference form of
da/ds has been used for the second-order expression. Noting that fos sin ads in equation (110)
represents the y’ value at step i (i.e., y';), the integral is expressed as fof sin ods =y'i.; + Ay'i,
where y’;_; is the y' value calculated from the previous iteration and Jo® sin ods is the value of the

integral from i-1 to i. The trapezoid and Simpson’s rules are applied to derive first- and second-
order approximations for Ay';, respectively:

Ay;= 9—‘-2“@ (sinor,,+sine) ,  first-order (112)

Ay;= %S- (sina;+4sin& +sina ;) . second-order

y'i_1 is the sum of the interval integrals calculated from previous iterations:
Y= 3 Ay . (113)

The angle & in equation (112) is the value of o evaluated midway between s; and s;_;. It can be
expressed in terms of the angles evaluated at i, i-1 and i-2 by expanding & into a Taylor series
about o;_;. Ignore terms higher than second-order and approximate the derivatives using center
differences about ¢;_; to yield a second-order accurate expression for &:

& z%(’.’»aﬁéai_,—a,-_z). (114)

Substitution of equations (111), (112), and (114), into equation (110) yields the following
nonlinear equations for ¢; at each contour integration step:

1 |&-C +Boy; ) As
a;=0,,+7p J

1-D 2
+ BOZAS (sin o, +sin 1)

first-order (115)

_da—ag, 2(Z-C+Boy;_))As
%i=73 3-D)|  BoAs?
73

(sin @ ;_;+4 sin & + sin ¢ ;))
second-order

After each iteration, x'; is calculated from:

X=X+ %‘- (cosa+cosa,y) , first-order (116)

X; =X+ %s— (cosax+4cos @ +cosa; ;). second-order
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In most calculations, the final x’;-estimate overshoots the length constraint (i.e., Ix'l>0.5). A
cubic approximation of s; versus x'; based on s;, Si_1, Si-2, and s;_3 is used to interpolate a final As;
that yields lx'l = 0.5. This value of As; is used to determine a final o; and contact angle estimate @; =
n2—o;. If ay fails to match, within a specified tolerance, the desired value of @, T is adjusted, and the
contour integration is repeated. If @; > , then T is increased, while if @; < @, it is decreased. The
new estimate of X is obtained using a simple bisection algorithm, which enables accommodation of
large positive and negative curvatures at the center-line.

In the actual procedure, one only needs to calculate one side of the meniscus since the
geometry and flowfield are symmetric about x' = 0. However, the same general approach could be
applied to unsymmetrical problems by shooting the solution to the desired contact angle and treating
3 and the final x';-estimate as the independent and dependent variables, respectively. The iteration
would continue until the sum of x';-estimates on both sides were equal to 1.0. The meniscus center
would then be adjusted until the final x’;-estimates coincided with the side walls.

D. Summary

The equations and algorithms outlined in this section serve as the basis for the Combined
Interfacial Convection (CIC) computer program, which was used to obtain the results in sections VI,
VII, and VIIL. A brief description of the program, including its input/output format, subprogram
structure, key variables and general capabilities, is provided in appendix B. A complete listing of the
CIC program module and its associated subprogram elements is given in appendix C.

In the CIC code, calculation of meniscus geometry is the outermost iteration in a five-loop
flowfield solution procedure. The first (i.e., innermost) loop determines a velocity field that satisfies
equation (88) based on an estimated pressure distribution. The second loop (i.e., SIMPLER
algorithm) adjusts the velocity and pressure field by solving equations (83) to (85) in which SAP! =
SV = §,AP2 = (. Once convergence is established for V; and P, the third loop computes the
temperature field using equation (89). In the fourth loop, the time step is advanced to steady-state,
and temporal convergence is checked. The criterion is that the variables vary no more than 0.01
percent from their values at the previous time step.

In the velocity and SIMPLER loops, the dynamic pressure is fixed P4 = 0 at the two corners
at the base of the pore (i.e., lower left and right-hand corners). By separating pressure from the
stress tensor and restricting application of Green’s theorem to the viscous stress tensor in the weak
formulation of the momentum equation, one eliminates the need to specify pressure at the other
boundary nodes.
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V. SCALING ANALYSIS

A. Introduction

The finite element equations derived in section IV provide the basis for determining the
velocity, pressure, and temperature within the domain in figure 4. To make such an investigation
physically relevant, one ascertains via parametrics the magnitude and sensitivity of the principal
dimensionless groupings identified in section III over a range of thermophysical properties, pore
widths D, and superheating/subcooling limits IA7). This is necessary in order to identify the
parameter ranges representative of pores with I pm <D <102 um and 10-1 K < IAT1 < 1 K. Using
the properties for four fluids commonly used in capillary systems as a reference (table 3), a modified
parameter value, in which D and IAT| have been factored out, is calculated for each fluid and
compiled in table 4. The minimum and maximum values for each modified parameter define an
approximate order of magnitude range for the thermophysical variance of each dimensionless
grouping.

To evaluate parameter sensitivity to pore size, one considers a range of D from 10-2 um to
104 um. Although 1 pum represents a reasonable lower limit for most fine mesh screens, porous
surfaces and wicking structures, 10-2 um is selected to broaden the range of study. In addition, 10-2
um generally represents the upper limit at which long-range intermolecular forces between the liquid
and solid begin to influence surface morphology. It is assumed that these forces can be accounted for
on the macroscopic-level by assuming a fixed contact angle between the meniscus and side wall.
The upper bound of D, 104 um (= 1 cm),. is arbitrarily defined as a maximum, since characteristic
dimensions in which D 2 105 um (= 10 cm) fall more in the category of a small container and out of
the size range of this study.

Table 3. Fluid properties.
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Property H, O Ethanol Ammonia R-114
Tsar (K) 373.1 3517 23938 276.9

p1 (kg/m?) 9.50x10? 7.89x10% 6.83x107 1.52x103
py (kg/m?) 598x10"! 149 8.90x10 783

W (kg/(m-s)) 2.83x104 3.72x107 2.69x1074 5.06x104
Ky (kg/(m-s)) 1.29x1075 1.08x10°5 9.00x10% 1.04x1075
ki (W/(m-K)) 6.82x10! 1.71x10! 5.48x10-1 9.23x10-2
ky (W/(m-K)) 251x102 230x102 2.13x10°2 9.84x10-3
Cp1 (J(kg-K}) 421x10° 244x10° 447x10° 1.00x10%
Cpy (J(kg-K)) 1.89x103 1.69x10° 2.18x103 6.34x10°
ay (m2/s) 1.69x10~7 8.88x1078 1.79x10”7 6.05x1078
o, (m2/s) 2.22x1073 9.16x1076 1.10x1075 1.98x10-6
L (k) 2.26x10° 8.79x10° 1.37x108 136x10°
M, (kg/kgmole) 18.02 46.07 17.03 170.94

¥ (N/m) 5.88x10-2 200x1072 424x1072 2.57x1072
ldwdTl (Nim-K)) 1.94x10™4 9.69x1074 3.26x10™ 1.15x10™4
B (1/K) 7.72x107% 1.10x1073 245x1073 1.78x1073

Values at 0.1013 MPa.




Table 4. Dimensionless groupings—factored form.

Parameter H,0 Ethanol Ammonia R-114 Range

Ip 1.60x103 530x107 7.68 x10 1.94x10? 107 & 103
T 3.68x1072 1.35x107! 3.89x1072 1.07x10! 102 & 107
fu 458x1072 290x1072 335x1072 2.04x1072 102 & 107!
Pr (liquid) 175 531 219 5.51 110

A 2.34x107! 227x102 3.19x107! 3.97x107! 10261
Mal(DAT) 4.06 %108 2.93x107 6.76 X106 3.76 X108 106 & 108
Bo/(D?%a) 1.60x10° 3.87x10° 1.58x10° 5.81x10° 105 & 106
Blc/(Dh) 147 585 1.82 1.08)(101 1< 10
Big/D 1.15x107 3.03x107 1.48x107 1.96 x107 107 & 108
RsDAT 8.13x1075 6.31x1073 4.54%x107% 3.82x107% 105 & 1074
Cr/AT 3.29x1073 484x1072 7.69%1073 448x1073 103 & 107!
AD2 2.60x1019 3961018 8.85x1018 1.23x10!8 10!% & 1019
Bige/(D?AT?) 8.63x10! 2.70x10? 2.39x10? 2.05x107 102 5 103
VrADAT?) 3.44x102 1.16x103 9.29x10? 8.68x10? 102 & 103
Gri(aD}AT) 8.72x1010 4.86x1010 1.61 x1012 157x10!! 1010 101
CaD 1.42x10°° 8.77x10°% 250x107° 6.57x107% 1091078

The maximum superheat AT that can be sustained without causing nucleation depends on the
fluid, contact surface roughness, and pore width. For the size range considered here, a bound of
10-1 K to 1 K seems reasonable. However, to emphasize the effect of larger superheats, which are
encountered with thin films, an upper limit of 10 K is assumed.

B. Meniscus Solution

First, the parameters arising from equation (45), namely Bo, Vr, Cr, and Ca are examined. For
the purely static, saturated case (Pg=V; =T = (), the terms containing Ca, Vr, and Cr vanish leaving
an expression dependent solely on Bo. The sensitivity of surface morphology for this case is
illustrated in figure 7 which shows the left half of the meniscus surface for different values of Bo. The
lower limit, Bo — 0, yields a constant-curvature interface, which is virtually circular for Bo < 10-1.
With larger Bo, the meniscus must flatten at the center-line to accommodate the increasing
curvature towards the side walls. At the upper limit, Bo — oo, the interface becomes flat, and
curvature in the interline region is practically indiscernible.

Heating or cooling establishes a temperature and velocity distribution along the surface, and
requires the consideration of dynamic pressure, vapor recoil, and surface tension variation to solve
equation (45) and its numerical counterpart, equation (110). Because the flow variables are scaled
with viscous timescales, the influence of dynamic pressure is dictated by Ca which relates viscous
stress to nominal surface tension. The greatest variation in P, occurs in regions of high velocity
gradient, such as the side wall and meniscus interline. A sharp change in P4 is expected at the
interline followed by a somewhat constant distribution in the center of the pore. Since the value of Py
can be either positive or negative, the surface P, distribution may either offset or reinforce the
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Figure 7. Meniscus geometry for static isothermal pore.

influence of Bo on curvature. From a physical standpoint, a positive Py in the x’-direction would
oppose action of the imposed acceleration and hydrostatic pressure, causing higher curvatures in the
middle of the meniscus. The converse situation would hold if the pressure gradient was negative.

The effect of vapor recoil is embodied in the term containing Vr. The term is always positive,
since Vr > 0 and T2 > 0. This indicates that the recoil force from vapor ejection or impingement
always acts in the —x,-direction and augments the contribution of hydrostatic pressure on curvature.
Because the recoil term is proportional to 72, this effect is more pronounced at the side walls, where
the scaled temperature 171 is highest. To accommodate the increasing curvature towards the side
wall, a lower curvature is required in the center to maintain equilibrium. This causes the surface near
the side wall to appear depressed relative to the center. The magnitude of this depression depends
on Vr and the surface temperature distribution. It is also possible that for high values of Vr the
equilibrium interface may assume a negative curvature and bulge upwards in the middle of the
surface.

Thermally induced surface tension variation is represented by the denominator of equation
(45). Cr arises from expressing v as a linear function of temperature. Although Cr is ordinarily quite
low up to moderate levels of superheating/subcooling, at high IATT’s it can have an appreciable effect.
For a typical fluid (0 < Cr < 1), heating (T > 0) decreases surface tension and causes an increase in
curvature towards the side wall, similar to the recoil term. At higher temperatures, the curvature
must increase to preserve equilibrium and offset reduced surface tension. With cooling (T < 0), the
opposite trend occurs and the curvature is maximized at the center, which is manifested as a surface
depression in the middle of the cavity.

Plots of the upper and lower thermophysical ranges of Bo, Cr, Vr, and Ca versus D for [ATI’s of
10-! K and 10 K are shown in figure 8.
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Figure 8. Normal stress-related parameters.

Bo and Ca, which characterize the influence of hydrostatic pressure, viscosity, and bulk
surface tension, are independent of IAT] and exhibit nearly opposite functional dependence on D
(i.e., Boo< D2 and Ca o D-1). This implies the existence of a capillary-dominated regime at small
characteristic dimensions (D ~ 1 um) where Ca is large relative to Bo and the velocity and dynamic
pressure terms in equation (45) influence surface morphology. Depending on the value of superheat,
Vr and Cr may also affect the geometry. Although Vr is proportional to Ca, it also varies inversely
with the square of Rs (where Rs o< 1/D) which means that Vr e< D. At low AT, both Vr and Cr have a
minimal effect on morphology in the capillary regime. However at higher superheats (AT = 10 K),
both can overwhelm viscous effects and dictate interface behavior.

At higher characteristic dimensions (D ~ 104 pm), Bo predominates, and one can effectively
ignore contributions from dynamic pressure. At low superheats, the effect of vapor recoil and surface
tension variation are also small, and one expects the meniscus to be governed entirely by
hydrostatic pressure. At higher superheats, the effect of vapor recoil becomes extremely important
and can compete with hydrostatic effects. Since Cr < 1, its contribution will be small for large D.

C. Velocity/Pressure Solution

Solution of velocity and dynamic pressure requires the parameters in equations (36), (50),
and (52). By recasting Re in terms of Ma and Pr, and fixing Pr = 1, one obtains the three parameters
Gr, Ma, and Rs. Gr represents the sensitivity of density to temperature and dictates the magnitude of
buoyancy, while Ma represents the sensitivity of surface tension to temperature and dictates the
magnitude of thermocapillary stress. Rs arises from the constitutive expression relating mass flux
and surface normal velocity to temperature. To maintain consistency with the definitions of Ma and
Gr, the sensitivity of interfacial mass transfer to temperature is expressed in terms of 1/Rs.

The sensitivity of Gr, Ma, and 1/Rs to D and AT are shown in figure 9. Note that these
groupings exhibit the same proportional functional dependence on AT. One finds that the different
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functional behaviors of Ma and Gr on D divide the velocity solution into three types of regimes. The
thermocapillary regime occurs at D < 103 pum where Ma >> Gr. In this region, velocity is dictated by
surface tension variation and, to a comparable extent, the sensitivity of 1/Rs to temperature. The
influence of Gr (which follows the same functional behavior as Bo) is essentially nonexistent. Note
that 1/Rs and Ma exhibit parallel trends with respect to D and AT, which would confirm the
competition observed by Chen et al.4!
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Figure 9. Momentum-related parameters.

Extrapolating the trends in figure 9 to larger pore widths indicates that the regime where
buoyancy forces predominate over thermocapillary and evaporative effects occurs at D > 105 um.
Between this point and the upper limit for pure thermocapillary flow (D < 103 um), there exists a
regime where buoyancy and thermocapillary forces compete. Here, the forces can either augment or
offset each other depending on the orientation of the acceleration field and locations of applied
heating and cooling.

D. Temperature Solution

The complete temperature solution primarily involves the boundary condition, equation (54).
For the case of two isothermal side walls, one expects a large change in temperature near the side
wall followed by a more uniform distribution in the center of the pore with higher Bi,. At extremely
high Bi,, the scaled temperature only a short distance away from the wall will be negligible
(i.e., T = 0), and thermocapillary effects will concentrate at the walls in a region where there is a
notable temperature change along the surface.

The relative sensitivity of the two parameters in equation (54), Bi, and Big., is shown in
figure 10. Biy, increases linearly with D from 10 at D = 1 um to 10 at D = 104 um. The functional
variation of Big, with respect to D and AT appears to support the original assumption of ignoring this
term in the Neumann condition for temperature. Although Bi, varies linearly with D2 and AT, its
magnitude is so low that it never contributes to interfacial temperature. The trend in figure 10
suggests that it may become important only at characteristic dimensions significantly greater than
the upper limit of this study.
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Figure 10. Energy-related parameters.

E. Summary

In this section, the parameter ranges appropriate for studying 1 um to 102 pm wide pores
subjected to superheating/subcooling levels between 10-! K and 1 K have been established. It is
seen that Gr and Bo become vanishingly small in this size range which implies that buoyancy and
hydrostatic effects can be ignored in the problem. The key parameters needed for solution of velocity
are Ma and Rs which assume the ranges: 10-! < Ma < 103 and 10-! < Rs < 103. For calculation of the
meniscus surface, Cr can range from 104 for the low value of superheat/subcooling to 10-1 at 1 K. A
contribution is also expected from Ca which varies from 10-2 to 10-5. For temperature, one sees that
Bi can vary from 1 to 104 over this range.

V1. PORE FLOWFIELD—FIXED SURFACE
A. Introduction

The CIC program described in appendix B and listed in appendix C is first used to investigate
the flow and temperature fields in the vicinity of a fixed circular meniscus. Evaluating such a domain
is equivalent to considering a gravity-free environment, and ignoring the velocity, pressure, and
temperature terms in the normal stress balance. In a one-g environment, this assumption is probably
inappropriate, since the pore length scales for which Cr and Ca vanish (D > 102 pm) yield increasing
contributions from Bo and hydrostatic pressure. However, in microgravity with moderate dimensions,
one would expect to find situations in which such an assumption was valid.

Investigation of a nondeforming domain is useful for understanding how Ma, Rs, and Bi

mutually influence convection, heat and mass transfer, thermocapillary stress, interfacial
temperature, and circulation. The effect of contact angle @ should also be examined because, as
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Kamotani and Platt38 showed, highly wetting liquids incur different stress distributions and
circulation intensities than a flat surface. Obtaining reference solutions for interfacial temperature,
pressure, and velocity also enables evaluation of the first-order influence of Ma, Rs, Bi, Ca, and Cr on
surface morphology.

In this section, four regimes are examined: (1) the basic state, (2) pure evaporation and
condensation, (3) subcooled and superheated thermocapillary flow, and (4) combined mode
convection, Although liquid motion is ignored in the basic state, this case is important since it
reveals the underlying influence of Bi on domain and interfacial temperature. Since the boundary
conditions for surface velocity and thermocapillary stress are expressed as functions of T and 97/ds,
the basic state interfacial temperature yields insight regarding the driving mechanisms for convection
within the cavity. Furthermore, the temperature distributions of the three convective regimes may be
viewed as departures from the basic state.

With pure evaporation and condensation, the tangential stress is ‘assumed to be vanishingly
small by setting Ma = 0. The entire velocity field is driven by the mass flux across the meniscus
which is dictated by Rs and surface temperature. In the case of pure thermocapillary flow, the
resistance is set to a large value (Rs = 103) that effectively removes the normal component of
velocity at the interface. The flow structure is dictated by Ma and the surface temperature
distribution. In combined flow, one examines the simultaneous effect of Ma, Rs, and Bi, where Ma > 0
and Rs < 103,

B. Basic State

In the basic state, heat transfer between the pore boundaries occurs solely by conduction. To
examine this regime, one sets V; = 0 and solves the steady-state diffusion equation for temperature
T ;= 0 while applying equation (54) on the meniscus. The temperature distribution is a function of Bi
and the geometry of the upper boundary which, for a circular meniscus, depends exclusively on
contact angle. When applied within this context, Bi still delimits the energy transport within the
liquid, but is defined according to the general form in equation (55).

The sensitivity of liquid temperature to Bi is illustrated in figure 11 which shows half-cavity
isotherms corresponding to @ = 157, and Bi = 1, 10, and 102. Only the left side of the cavity is shown
since the distribution is symmetric about the x; = 0.5 axis. Also, the isotherms are expressed in
terms of 171 because the scaled temperatures for superheating and subcooling are equivalent in
magnitude and differ only in sign (i.e., T < 0 for subcooling and T > 0 for superheating). The most
obvious trend from these plots is the increase in cavity thermal gradient at larger values of Bi. As
Bi - <, conduction becomes the rate limiting process for heat transfer, and the gradient must
increase to support enhanced heat transfer between the liquid and vapor. Alternatively, as Bi — 0,
surface convection becomes the limiting factor, thus reducing the required thermal gradient.

An important consequence of these trends is the role that Bi plays in dictating interfacial
temperature. The temperature profiles corresponding to the cases in figure 11 are shown in figure 12.
Although the influence of T on convection is conveyed at the boundary by defining T = T(s), since
s = s(x1) at a fixed w, temperature can just as easily be expressed in terms of x;. In all cases, the
maximum temperature difference between the liquid and vapor is located at x; = 0 and 1, while the
minimum occurs at x; = 0.5. The difference between the scaled temperatures at the side wall and
meniscus center-line is indicative of the average surface temperature gradient.
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Figure 11. Basic state half-cavity isotherms.
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Figure 12. Basic state surface temperature.

In the convection-limited regime represented by low Bi, IT] and |d7/ds| decrease uniformly
towards the center. For Bi < 10, the effects of conduction and surface convection are nearly
equivalent, and the temperature distributions are similar in that the change in 107/dx;! with x; is
approximately constant. As Bi — oo, however, the change in 171 and 107/9s! is greater which reflects
the higher thermal gradient in the domain. For Bi > 102, heat transfer becomes conduction-limited,
and T(x1) exhibits two distinct regions. At the interline, there is a steep temperature gradient
followed by a relatively uniform distribution in the middle of the cavity.

Although the interest is in liquids with small contact angles, examining the influence of larger

@ is crucial for understanding the unique stress characteristics of highly wetting surfaces. The most
significant effects of contact angle are the change in surface area available for heat transfer, and the
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variation of T and d7/ds along the surface. This is evident in figure 13 which shows the temperature
magnitude as a function of contour position s and @ with Bi = 1, 10, and 10? in cavity-centered
coordinates. It is clear that the overall change in T and d7/ds is less with smaller contact angles
because of the increase in area and the surface’s steeper orientation relative to the internal
temperature gradient. As @ — 0, the total supportable heat transfer becomes greater due to the
increase in surface area. Hence, the liquid/vapor temperature difference and gradient along the
surface must be less to preserve the pore energy balance.

w=0°
15¢
.6 b 45¢

4 | 90°

Bi = 100

.8 ©=0°
15°
6 45°

|71 75°
90°

ot

-1 -5
§ - 8(xn=0.5)

S

Figure 13. Surface temperature versus contour position and ®.
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The surface’s steeper orientation relative to the temperature field is exhibited by the negative
curvature in I7(s)l near the side wall for Bi = 1 and @ = 0. In the contact region, the surface tangent
vector s; points in a direction that is nearly vertical and parallel to the side wall. The temperature
along the contour decreases much more slowly with respect to s than the case of a flat meniscus. As
® — 90°, 197/3s! tends to increase due to the more perpendicular orientation of the interface relative
to the side wall.

The sensitivity of 171 to @, especially in the middle of the meniscus, is greater at lower values
of Bi. Temperature variation along the meniscus is continuous and sensitive to the relative
orientation between the temperature gradient and surface. As Bi — oo, the gradient is shifted toward
the side wall, thus diminishing the sensitivity in the center of the cavity. At Bi = 102, the differences
in IT(s)l are primarily due to the variation in lds/dx1l near the side wall, and the temperature
distributions are essentially equivalent in the middle of the cavity.

A dimensionless expression for total heat transfer Q is obtained by substituting the scaling
factors in equation (33) into the equation for heat flux g, equation (54). Integrating the resulting
expression over the meniscus area yields:

Q =Bill , (117)
where

H=deI".
r

I1 is termed the thermal potential and represents the nonlinear dependency of Q on Bi and .
With superheating, @ > 0 which implies heat transport to the vapor, while with subcooling, heat
transfer is directed into the liquid (Q < 0). Since fluid convection is ignored, the magnitude of Q and I1
are the same for both heating modes. With the temperature distributions shown in figure 11, the
values of IT corresponding to Bi = 1, 10, and 102 are 1.17, 0.60, and 0.16, respectively. Although I1
decreases as Bi — oo due to the reduced temperature of the interface, the linear contribution of Biin
equation (117) offsets this decrease and yields corresponding @ values of 1.17, 5.98, and 16.43,
respectively. Q and I1 exhibit opposite behavior, since IT is related to the average interfacial
temperature by 7,,, = [I/T". This is evident from the values for T,,, which are 0.86, 0.44, and 0.12 for

Bi=1, 10, and 102, respectively.

The utility of IT extends to more than meniscus heat transfer and temperature. It is
particularly useful for comparing the effects of convection on mass flow through the cavity. With a
fixed surface, for example, the total mass flowrate (i.e., throughput) is obtained by integrating
equation (40) over the surface to yield:

ﬁ_jdl‘:%. (118)

1 serves a similar role as before by separating out the nonlinear influence of Bi and @ on mass
transfer.

The sensitivity of the magnitude of the basic state thermal potential ITI! to contact angle and
Bi is shown in figure 14. As Bi — oo, [[Ip| — 0 and the surface approaches the vapor temperature
T — 0. Consistent with the definition of Rs, this represents the state of complete equilibrium
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Figure 14. Basic state I, versus w and Bi.

between the liquid and vapor. With Bi — 0, however, the surface assumes the side wall value of
temperature and approaches the nonequilibrium limit. As expected, [[I;! tends to increase as
@ — 0, especially at lower Bi, because the temperature becomes more uniform and |71 — 1 along the
entire length of the meniscus. As Bi — 0, II1,1 approaches a maximum limit represented by the Bi =0
curve, which corresponds to the surface area as a function of ®.

By employing the boundary conditions for temperature and stress, one can derive additional
parameters that characterize the nonlinear influence of Bi and @ on the thermocapillary stress
distribution and its resulting traction along the meniscus. Although fluid convection and stress are
ignored by definition of the basic state, the surface temperature distributions yield a reference 97/ds
from which a normalized thermocapillary stress, based only on the nonlinear influence of Bi and w,
can be calculated. This derived parameter can then be used later to assess the influence of
convection on the actual force applied on the surface.

One begins by expressing the temperature gradient T ; as the product of a magnitude and a
unit vector g; parallel to T ;, that is:

T..-=g—£=lT,(olg,~ : (119)

|Topl=vT,T; -

One then substitutes equation (119) into the tangential momentum balance and heat transfer
conditions (equations (150) and (154), respectively), combines the two equations by eliminating the
common I7 ¢l term, and obtains an expression for the magnitude of the local thermocapillary stress

in terms of Bi and Re.

where

7,n;5;=—ReBiT % . (120)
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In deriving this expression, one assumes a nonzero heat flux between the liquid and vapor
(ie., Bi # 0). BiT in equation (120) represents the local heat transfer rate normal to the interface,
while ggsi/gjn;j is the ratio between the tangential and normal components of interfacial heat flux.
Equation (120) conveniently separates the linear contributions of Re and Bi from the nonlinear
effects of Bi and @. Since equation (120) acts in the direction of the tangent vector sm, the
components of the thermocapillary stress can be expressed as:

’L',-jnjsism=ReBi9m ’ (121)
where
_ 8iSk
6 m =-T 'an—J Sm -

The vector 6, is termed the modified stress and embodies the nonlinear influence of Bi and @
on the actual stress. Bif,, in equation (121) is the m-component of the temperature gradient parallel
to the surface. Since Re represents the ratio of thermocapillary stress to tangential heat flux, Bi6,, is
the portion of the surface heat flow contributing to tangential stress. An expression is obtained for
the overall force acting on the surface in the x,,-direction by integrating equation (121) along the
upper boundary.

F;y = ReBiO, (122)
where

@,,,:f 6 ,dr .
T

®,, is the nonlinear contribution to the total thermocapillary force in the x,-direction. In
analyzing the magnitude of force variation, one recognizes that ©,, = ©,,(Bi,®), and that 0,, tends to
vary inversely with Bi. Therefore, to obtain an adequate view of the influence of Bi and @ on F,, Fpy,
is characterized using the product Bi®,, which is termed the Re-normalized thermocapillary force. 6,
and ©,, are solely functions of surface geometry and the pore temperature field, and reflect the
direction of heat transfer relative to the surface.

With heat flow normal to the surface (i.e., gxsx = 0 and ggnx = 1), the thermocapillary stress is
zero. Alternatively, with a completely insulated boundary (gwne = 0), all heat at the surface flows
tangentially thus yielding pure thermocapillary flow. Note that equations (121) and (122) cannot be
used in this case because the definitions of 6,, and ©,, were derived assuming the presence of a
normal component of heat flux (i.e., Txng# 0 and geng # 0). In the case of a perfectly insulated
boundary or state of maximum nonequilibrium (i.e., Bi = 0), one resorts to the original expression for
thermocapillary stress.

Fy=-Re [ T;s;sdl . (123)
r

6; and ©; are useful for showing how contact angle and Bi alter the stress distribution along
the surface. Figure 15 shows the x; and x, components of 6; (i.e., 6; and 6;) plotted as a function of
contour position for the superheat condition, and Bi = 1, 10, and 102. The distributions are shown for
the left half of the meniscus. The positive values of 8; for s—s(x; = 0.5) < 0 produce a net force acting
on the left half of the meniscus in the x;-direction. The 6; distribution on the right side of the cavity,
which is a mirror reflection of the left half about the s-axis and center-line, results in an equal
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opposing force that cancels out the contribution from the left side. 6,, however, is negative and
symmetric about the center-line, and yields a net force in the —x;-direction.
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Figure 15. Modified stress versus contour position and .
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The sensitivity of 6;(s) to @ is due to the manner in which the relative orientation between
the temperature gradient and surface varies with @. At the lower limit of Bi (= 1), the convection-
limited nature of cavity heat transfer yields a surface temperature gradient nearly parallel to the
surface, ggsy — 1. Thus, heat flow in the surface direction is greater resulting in a more pronounced
modified stress distribution as Bi — 0.

With low Bi and contact angles, the functional relationship between 6, and s exhibits a
maximum between the center-line and side wall. At @ =0, 6, vanishes completely in the corners.
Not only does the vector contribution in the x; -direction vanish as @ — 0, but the surface becomes
parallel to the side wall and orthogonal to the direction of heat transfer, ggng — 1. The surface in this
region is steeper than the temperature gradient, and gs, increases for a certain distance away from
the side wall. That is, 96,/ds > 0, and 6; increases towards the center of the meniscus. This trend
reverses at a certain point since gy, = 1 at the center-line. The reversal point at which ggni begins to
increase depends on Bi and w.

With increasing w, the point of maximum 6; shifts to the contact line until @ = 45° where the
maximum coincides with the side wall. Above this value of o, the maximum disappears and gsk
decreases continuously from the side wall to the center of the cavity. As @ — 90°, the location of
maximum g;s, remains at the side wall, and 6; increases relative to the rest of the cavity.

8, exhibits the same sensitivity to ggsx and 7. Here, however, the vector component of 6,
(i.e., s7) near the side walls increases as @ — 0. Unlike 8, this tends to offset the decrease in the
magnitude of modified stress that occurs with reduced contact angles. Most importantly, it can
drastically reduce and eliminate the contribution of x;-component stress as @ — 90°. This unique
behavior is illustrated in figure 15 which shows that 16,1 can be higher for low @ in the middle of the
cavity. Another interesting aspect of 6, pertains to the case of a flat surface. Taking the limit of 6, as
@ — 90°, in which s; and g; — 1, one obtains 6, — s2/g2 (= —1). One can see that g, is nonzero at a
point immediately adjacent to the side wall, and for x; # 0 or 1, 6; = 0. This is the limiting case of the
xy-component stress for a flat surface.

Bi has a strong influence on 6; as shown by comparing 6; and 6, for Bi = 1 and 10. At larger
values of Bi, the temperature gradient becomes increasingly normal to the surface, and the
contribution of gsx between the side wall and center-line is reduced. The lowering of 6, and 6, about
the center-line is caused by the decrease in T and more perpendicular orientation of T,; with respect
to the surface. From a thermal standpoint, the interfacial temperature distribution is less conducive
to thermocapillary stress because of the increased normal component of heat flux. This trend reflects
a shift of the temperature distribution towards the side wall, which serves to decrease 6; but
increase the actual stress Bi6; due to the higher overall gradient.

With Bi = 10 and @ = 45°, the variation of 6;, which decreased linearly with s at Bi = 1,
follows the same general form as 8; with @ = 75°. In addition, the increasingly normal temperature
gradient is noted by the disappearance of 6; extrema at the smaller values of @. 6; follows the same
trends as 6, but because of the higher s, near the interline, the x,-contribution to stress is higher for
low contact angles. The value of 6, for all contact angles decreases with Bi due to the higher
temperature gradients and stress in the side wall regions. At the upper limit of Bi (= 102), the stress
force concentrates even more in the side wall regions for both the x; and x, components. At low
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contact angles, however, the x; component vanishes almost entirely (compared to a flat interface),
while in the x;-direction, it remains relatively high.

An important aspect of this problem is the manner in which 1Bi©;! varies as a function of @.
As the meniscus flattens (@ — 90°), the magnitude of ©; exerted on each half-cavity surface ©;h
tends to increase. Because of mirror symmetry, however, the total ®; contribution equals zero. The
only component remaining when one views the stress force in its entirety is ®,. The relationship
between 1Bi©,| for the basic state (i.e., IBi©;,l) and @ is shown in figure 16 At Bi = 1, IBiO,l is
equivalent to 1@;,l, and reducing w generally increases the total applied force in either the —x; or
+x,-direction. I1Bi®,,| actually reaches a maximum at 15° < @ < 45° and decreases slightly as
@ — 0. The important point is that the total force disappears with a flat surface.

Bi =102

0 30 60 90
O (deg)

Figure 16. Basic state Bi©®,, versus @ and Bi.

Although the nonlinear contribution to the total force decreases as Bi — oo, the linear
influence of Bi offsets this and yields an increase in 1Bi®;l. The sensitivity of 1Bi©;! to contact angle
tends to increase as Bi — oo due to the concentration of temperature change in the interline region.
As Bi — oo, dT/ds and a greater portion of the total stress become restricted to regions in which Is;!
is high. Hence, with lower @, more of the total stress force is directed in the x;-direction.

C. Pure Evaporation and Condensation

Although both modes of interfacial mass transport are based on the same kinematic and
equilibrium assumptions for the liquid/vapor interface, their influence on the steady-state
temperature field, thermal potential, and modified stress force is quite different. To model pure
evaporation and condensation, the thermocapillarity is ignored by setting Ma = 0. This minimizes the
tangential component of surface velocity and causes formation of a vertically-oriented flowfield. The
strength and structure of the field, particularly near the surface, depend on Rs and Bi. An example of
the stream function and temperature distribution for steady-state condensation and evaporation with
Rs=10-! and Bi = 1 is shown in figure 17. Note that the reference value of ¥ is set to O at the base
of the center-line. The ¥ values for the two cases are opposite in sign to reflect the different
directions of flow relative to the meniscus.
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Figure 17. Pure interfacial flow (Rs= 101 and Bi = 1).

Although no surface traction is present, a tangential component of surface velocity does exist
due to curvature and the nonuniformity in temperature. This phenomenon is illustrated in figure 17 by
the slight bending of the streamlines toward the side wall near the meniscus. The directional bias
arises because the maximum temperature difference and driving potential for mass transport occurs
at the contact line. The main consequence of this phenomenon is an increase in local vorticity near
the surface and strengthening of circulation on either side of the cavity.

The circulation in each half-cavity, which is defined as C = JFV ;5;dl", arises naturally from the
angular momentum caused by inequality between velocities along the center-line and no-slip region
of the side wall. For the left half-cavity, the equation for C is integrated counterclockwise along the
composite surface " containing the vertices (x1,x2) = (0,1), (0,0), (0.5,0), and (0. 5,90(). As will be
discussed later, half-cavity circulation appears to be an important aspect of the flow structure, and is
useful for assessing the competition between simultaneously occurring convection modes.

Comparing the cases in figure 17 points to several important differences between the two
modes of mass transfer. One is the generally lower flow intensity of condensation compared to
evaporation. With evaporation, the magnitude of IT increases from a basic state value of 1.17 to 1.27
which equates to raising T,,, from 0.86 to 0.94. The higher value of ITTl arises from the compression
of isotherms caused by convection of superheated liquid from the bottom of the cavity, which tends to
reinforce itself by raising the temperature and velocity normal to the surface. With condensation, the
downward direction of flow distends the temperature field about the surface and compresses the
isotherms towards the bottom of the cavity. This causes a lowering of IITI from 1.17 for the basic
state to 1.13 with convection, an increase in T,,, from —-0.86 to —0.83 and a reduction of @ into the
cavity. The condensation of warm liquid on the surface raises temperature, thus suppressing the
driving potential for mass flow into the cavity.

Another important difference is the magnitude of half-cavity circulation. For the subcooling
and superheating cases in figure 17, C = -17.71 and 19.49, respectively. The larger circulation
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magnitude for evaporation is primarily due to the flowfield’s higher mass flux and velocity along the
cavity center-line. This reflects the increased Tl caused by compression of isotherms near the
surface. Figure 17 also indicates that the surface velocity contribution as a fraction of total circulation
is greater for condensation as evidenced by the more pronounced side wall bias of ¥ near the
meniscus. At low Bi, however, the surface velocity contribution is small compared to center-line
velocity.

The effect of increasing Bi to 10, while holding Rs = 101, is shown in figure 18. At larger
values of Bi, the temperature distribution approaches the vapor value in the middle of the cavity and
acquires a larger gradient near the side walls. This change in heating characteristics reduces flow
intensity and yields less isotherm deformation, as evidenced by the lowering of IITl for subcooling
and superheating to 0.56 and 0.70, respectively. The associated reduction in center-line flow
translates to a decrease in circulation magnitude (i.e., C = -11.46 and 13.19 for subcooling and
superheating, respectively). Although center-line flow is reduced, the more pronounced ‘¥-bias
indicates a growing contribution to circulation from surface velocity.

Subcooling Superheating

T T

Figure 18. Pure interfacial flow (Rs= 10-1 and Bi = 10).

Increasing Bi reduces the influence of convection on the pore temperature distribution and
heat transfer. This is especially apparent in figure 19 which shows the ¥ and T distributions for Bi =
102. The V¥ profiles are essentially the same for evaporation and condensation, and the isotherms are
very similar to those for the basic state. The circulation magnitudes also decrease to nearly
equivalent values (C = —4.43 and 4.76 for subcooling and superheating, respectively) due to the drop
in center-line flow and diminishing influence of convection on the temperature field.

The Bi variation illustrated in figures 17 to 19 actually reflects a lowering of the evaporation
number E while holding Rs constant. Care must be taken when varying Biin cases involving
condensation or evaporation, because Bi = Bi(E,Rs). Proper assessment of the influence of Rs, which
arises from application of equilibrium assumptions to the kinematic condition for vapor/liquid mass
exchange, must account for the contribution of Rs to Bi. This can be done by comparing figure 18 with
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x1 ' ' ' ' xl
Figure 19. Pure interfacial flow (Rs = 10-! and Bi = 102).

Fig. 20 which illustrates the effect of reducing Rs from 10-1 to 10-2 while holding E = 10. At the lower
value of Rs, the interfacial flux and flowfield strength for evaporation increase and cause gr er
isotherm compression near the surface. Although the interfacial temperature gradient is substantially
larger, the total degree of nonequilibrium represented by II and T,,, decreases from 1.27 to 1.21 and
0.94 to 0.89, respectively. This is consistent with the definition of Rs from section III in that as
Rs — 0, Bi = o and T — 0 (or IT = 0). Although the decrease in Rs results in greater equilibrium
between the vapor and liquid, the associated convection and deformation of the temperature field
increases the 7 gradient near the surface and degree of nonequilibrium in the liquid.

Subcooling Superheating

Figure 20. Pure interfacial flow (Rs = 10-2 and Bi = 10).
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With condensation, reduction of Rs from 10-! to 10-2 also increases flowrate. However, the
¥ -bias and temperature gradient in the corners becomes greater due to an increase in interfacial
temperature. Unlike evaporation, the downward flow of condensing liquid promotes equilibrium along
the interface by compressing the isotherms towards the bottom of the cavity. The reduction in the
magnitudes of IITI (from 1.13 to 0.53) and Tavg (from 0.83 to 0.39) is much greater than with
evaporation and indicates a higher level of equilibrium along the interface. Because of the lower IITI,
the flow intensity for condensation is less than evaporation. In addition, there is an increase in
temperature gradient and nonequilibrium along the other boundaries.

The influence of both mass transfer modes on interfacial transport, circulation, and, in the case
of a nonzero 09T, stress is characterized by the departure of temperature from the basic state.
Surface temperature distributions for evaporation and condensation with Bi = 1, 10 and 102 are
shown in figures 21 and 22, respectively. Note that these profiles have been superimposed on those
for the basic state (Rs = o) to aid in visualizing the deviation,

X1

Figure 22. Interfacial temperature (pure condensation).
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Figures 21 and 22 confirm the behavior noted previously, namely that evaporation causes a
flattening of the temperature distribution and an increase in II. This is attributed to the
replenishment of superheated liquid from the lower boundary which, upon approaching the surface, is
directed toward the corners and regions of highest mass/heat transfer. Because the liquid/vapor
temperature difference is lower in the center, this hot liquid sweeps along the surface to the
sidewalls, thus flattening the temperature distribution and reducing the modified stress force.

With condensation, the surface is heated by the vapor and assumes a higher temperature
relative to the basic state. Since the mass flux is concentrated in the contact region, flow is directed
into the center of the cavity, which causes a peaking in the temperature profile. Unlike evaporation,
this temperature rise reduces the temperature difference between the vapor and liquid and decreases
the magnitude of 1. However, the average temperature gradient along the surface is higher than the
basic state and yields a larger modified stress force.

The influence of both mass transfer modes on interfacial transport, stress, and, indirectly,
circulation is characterized by the departure of IT and ©, from the basic state. With interfacial mass
transfer, IT exhibits the same functional dependence as IT, in that IITI tends to increase with reduced
Biand . Deviation from this reference is best expressed using the ratio I1/TI,. Figure 23 shows
TU/IT, versus Biand @ at Rs = 10-1. The deviation for evaporation is always positive, since TI/II, > 1
over the range of interest. With condensation, IT/IT, < 1, thus indicating a reduction in thermal
potential and suppression of interfacial transport. The point of maximum deviation (i.e., extrema of
IT1,) represents the transition between convection and conduction-limited heat transfer processes,
and occurs between 1 < Bi < 10. In this range, fluid convection plays a principal role in dictating the
temperature distribution. As Bi — e, the deviation from the basic state vanishes (i.e., /I, —» 1).
The surface and domain temperature distributions become conduction-limited, and are affected less
by fluid motion within the cavity. With vanishing Bi, however, the more uniform liquid temperature
restricts the magnitude of temperature variation near the surface, and TI/T, approaches unity.

14
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- o =75°
4  =45°
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Figure 23. TI/T1, versus Bi and @ (interfacial flow).
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Evaporation and condensation also have different effects on the temperature gradient and
modified stress along the surface. Figure 24 shows ©,/0,; as a function of Biand . The fact that
0,/0,, < 1 for evaporation confirms that this mode of interfacial transport tends to reduce the
average temperature gradient and yields a lower total stress force in the x;-direction than the basic
state. It also suggests that evaporation should suppress thermocapillarity when both convection
modes are present. At the upper limit of Bi (= 102), there is little difference in the stress
distributions (©,/0,, = 1) since the temperature deviation is so small. With lower Bi, most of the
change in temperature relative to the basic state occurs in the center of the pore, but the temperature
distribution and gradient near the side wall are essentially the same. Hence, the force ratio remains
constant. With further reductions in Bi, the maximum change in interfacial temperature gradient
shifts toward the side walls and at a certain point begins to reduce the gradient. This reduction
continues to a minimum at Bi = 1. Further reductions in Bi, while not shown on figure 24, must cause
an increase in ©,/0,,, because as Bi — 0, the basic and convective state temperatures approach

unity, and d7/ds — 0 for both cases.

1.6

Condensation
o=15°
w=75°
W =45°

1.4

1.2 1

1.0

Evaporation
w=75°
o =45°
w=15°

02/02b

0.8 ;

0.6 |

04 ———rrry —rrr
1 10 100

Bi

Figure 24. ©,/0,, versus Bi and w (interfacial flow).

Condensation exhibits an opposite effect on the thermocapillary force. That is, ©2/0,5 > 1 and
the stress increases with lower Bi. As Bi — oo, the behavior is very similar to evaporation and
0,/0,, — 1. As Biis reduced, however, the accumulation of heated liquid in the center sustains a
higher gradient along the surface. The gradient near the side wall for the basic state decreases faster
than that for the convective regime which assumes a nearly constant distribution from the side wall
to the center of the cavity. Note that with convection, the change in the gradient becomes
increasingly isolated in the center of the meniscus. Therefore, the force ratio, which is mostly
dictated by the gradient in the side wall regions, is greater and continues to increase as Bi — 0.
Figure 24 suggests that ©,/0,, increases without limit with Bi < 1. This, however, cannot be true
since ®, — 0 as Bi — 0. It is likely that, as with evaporation, ©,/0,;, = 1 as Bi = 0.
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The influence of condensation and evaporation on circulation is summarized in figure 25. The
most apparent trend is the higher circulation associated with small contact angles. This is due to the
larger center-line velocities resulting from the increase in I[1l and exposed surface area. With large
o, the streamlines become more perpendicular to the surface, which further reduces the contribution
of surface velocity to circulation intensity. Another trend is the higher circulation associated with
evaporation. This is especially evident at low Bi due to evaporation's higher i1l and center-line
velocity. At the upper Bi limit, however, the circulation for condensation appears to be greater at
large contact angles (i.e., ® = 45° and 75°). In this regime, the center-line velocity is low compared
to the surface component. Hence, the larger surface temperature gradients associated with
condensation yield higher circulation intensities than evaporation.

The differences in IC| for condensation and evaporation appear to vanish at the lower and
upper Bi limits due to the equivalence of surface temperatures. As Bi — 0, the surface temperature
approaches unity and yields a normal flux that predominates over a vanishing tangential component.
The center-line velocity approaches a value that is entirely a function of @ and Rs, and is equivalent
in magnitude for both modes. Therefore, the magnitudes of ICl should converge to the same value as
Bi — 0. With larger values of Bi, the center-line contribution decreases but is partially offset by the
increase in surface velocity. The net effect is a decrease in circulation due to a reduction in
throughput. As Bi — e, the contribution from the center-line vanishes and the circulations for both
cases approach zero.
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Figure 25. Half-cavity circulation versus Bi and o (interfacial flow).

D. Pure Thermocapillary Flow

To examine pure thermocapillary flow, the interfacial resistance is fixed at a high value
(Rs = 103) to eliminate the normal component of velocity and ensure parallel flow at the surface. The
influence of Ma and Bi is first investigated by considering the values Ma = 102 and 103, and Bi = 1,
10, and 102 at a fixed @ of 15°. Figure 26 shows the steady-state ¥ and T distributions for a
subcooled and superheated cavity with Bi = 1 and Ma = 102. For both heating modes, the thermo-
capillary stress, which acts opposite to the surface temperature gradient, establishes twin
counter-rotating vortices on either side of the cavity. With subcooling, the temperature gradient is
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negative in the x’'-direction, and causes a traction toward the corners. This establishes
counterclockwise and clockwise rotations in the left and right sides of the cavity, respectively. With
superheated boundaries, d7/dx’ > 0, and the traction on either side is directed into the center or
—x'-direction. The sense of cell rotation for subcooling and superheating are opposite, as indicated by
the positive and negative values of streamfunction. The close similarity between the isotherms in
figure 26 and the corresponding basic state in figure 11 indicates that at low Ma the flow is too weak
to cause appreciable deformation of the temperature field. Conduction remains the primary mode of
heat transfer.

Subcooling Superheating

T

Figure 26. Pure thermocapillary flow (Ma = 102 and Bi = 1).

At higher Ma, however, convection parallel to the surface causes a significant deviation from
the basic state temperature. This is particularly evident in figure 27 which shows the ¥ and T
distributions for Ma = 103, Apart from a nearly order of magnitude increase in cell strength, reflected
by the larger values of W, increasing the sensitivity of surface stress to temperature substantially
alters the surface and domain temperature distributions from the basic state reference. In the case of
subcooling, surface fluid convected towards the sides of the cavity deforms the isotherms away from
the center-line and establishes a higher Id7/dx'l in the vicinity of the side wall. Return circulation
from the lower portion of each cell convects subcooled liquid upwards through the center, thus
compressing the isotherms and causing a temperature depression in the middle of the surface. With
superheating, the isotherms near the surface deform into the center of the cavity due to the transport
of heated liquid from the side walls. This circulation, which is consistently stronger than subcooling,
causes isotherm deformation in the direction of flow and a reduction of Id7/dx’l near the corners. The
isotherms about the axis of symmetry extend down into the fluid due to the transport of cool liquid
from the surface.
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Figure 27. Pure thermocapillary flow (Ma= 103 and Bi= 1).

The influence of raising Bi is shown in figures 28 and 29 which depict ¥ and T distributions for
Ma =102 and 103 at Bi = 10. An obvious difference between these cases and those for Bi = 1 is the
marked increase in circulation intensity arising from increased temperature variation and stress. At
Ma =102, deformation of the temperature field is more extensive than figure 26 (Bi = 1). However, it
is relatively small compared to the Ma = 103 case, where one encounters considerably more isotherm
deformation than figure 27. With subcooling and Ma = 103, the flow assumes the same structure as
Bi =1, but the transport of heated liquid in the x'-direction shifts the maximum temperature to a
point midway between the center-line and side wall. With superheating, the circulation cell shifts
toward the cavity center and causes formation of a temperature depression in the middle of the pore.
The gradient associated with this depression results in a centrally located stress concentration
directed towards the center-line.

Subcooling Superheating

L

Figure 28. Pure thermocapillary flow (Ma = 102 and Bi = 10).
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Figure 29. Pure thermocapillary flow (Ma = 10° and Bi = 10).

The same trends apply at the upper limit of Bi (= 102), shown in figures 30 and 31. Although
the flowfields are stronger than the previous cases, at low Ma (= 102), the difference in isotherm
distributions for the two heating modes vanishes as Bi — oo.
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Figure 30. Pure thermocapillary flow (Ma = 102 and Bi = 102).

Subcooling Superheating

Figure 31. Pure thermocapillary flow (Ma = 103 and Bi = 102).
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All the cases investigated so far indicate that superheating consistently yields a stronger
circulation than subcooling. This difference is primarily due to the manner in which the circulation
cells situate near regions of concentrated stress. That is, the cells shift towards the side wall with
subcooling, but move towards the center-line when superheated. The viscous losses associated
with these positions are quite different. At the side wall, subcooled flow accelerated along the
surface encounters the stationary boundary at a higher relative velocity than the superheated regime,
which meets it at the bottom of the cell. Thus, the viscous losses along the side wall are greater for
the subcooled regime. Along the center-line, however, both modes experience a slip condition
caused by opposing flow from the other side of the cavity. Although the viscous losses here are
greater for superheating, the losses for both modes are less than those at the side wall.
Consequently, the superheated flow regime incurs less viscous losses and a higher circulation than
subcooling.

Figures 32 and 33 depict the interfacial temperature profiles for subcooling and superheating
with Ma = 103 and Bi = 1, 10 and 102.

Figure0 32. Interfacial temperature (superheating).
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Figure 33. Interfacial temperature (subcooling).
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In both cases, the_deviation from the basic state distribution is caused by the accumulation
and convection of heated liquid along the surface. With subcooling, the liquid is convected towards
the side wall thus shifting the temperature distribution and isotherms to either side of the cavity.
There is also a competing upward circulation of cooler fluid along the center-line which reduces
surface temperature and causes a localized depression in the temperature profile. This competition
arises because upwelling opposes the surface temperature gradient and can cause dT/ds to vary in
sign between the center-line and side wall.

With superheating, liquid heated at the side walls flows to the center under the action of
thermocapillary stress, while fluid heated at the bottom is circulated and directed at the corners. The
direction of convective heat transport coincides with that for surface conduction, and dT/ds changes
sign only at the center of the meniscus. Again, one observes the formation of a temperature depres-
sion near the center-line caused by the accumulation and downward circulation of heated liquid.

The response of surface temperature to thermocapillary convection yields a more complex
deviation from the basic state thermal potential and modified stress force than pure evaporation or
condensation. Figure 34 shows ©,/0,; and I'/T], as functions of Bi for the cases in figures 26 to 31.
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Figure 34. ©,/0,, and [T/T1,, versus Bi (thermocapillary flow).

One sees that the deviation in TT for both heating modes increases with Bi. With
superheating, hot liquid flows from the side walls to the center-line, and from the bottom to the
corners. Cellular convection in this case is complementary with the interfacial temperature gradient
and tends to raise TI. With subcooling, the heated liquid convected along the surface tends to raise
interfacial temperature and lower I1. However, the upward circulation of cooler fluid causes a
localized depression in the temperature profile that tends to increase T1. Although the influence of
upwelling increases with Bi, T/T1, for subcooling is always less than superheating. In fact at low Bi,

surface convection dominates the interfacial temperature profile, and IT/TIp < 1.
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The magnitude of @, for superheating is always less than the basic state because of its lower
average surface temperature gradient. One sees that this difference is greatest at the lower limit of
Bi, and as Bi — o, ©,/0,;, — 1. An almost opposite trend occurs with subcooling. At low Bi,
interfacial convection shifts the temperature gradient to the side wall, thus increasing the magnitude
of 9T/3s and the contribution of s; to ©,. With higher Bi, however, this effect is increasingly offset by
the temperature depression caused by upwelling, which opposes the thermocapillary-induced
thermal gradient and stress. The competition between these two effects yields a minimum condition
for ©,/0,, at Bi = 30. Above this value, upwelling predominates, and ©,/0,, increases such that

0,/0y, > 1 as Bi — oo,

Figure 35 illustrates the variation in circulation intensity with Bi for Ma = 102 and 103. As
explained before, the circulation for superheating is higher due to the lower viscous losses incurred
along the side wall. At low Ma, the values of IC| for both modes converge to a common value due to
the reduction in isotherm deformation at low and high Bi.

1000

100 1

10 4

1 10 100
Bi

Figure 35. Half-cavity circulation versus Bi (thermocapillary flow).

As Bi — 0, the surface temperature becomes more uniform and less sensitive to convection.
Furthermore, the temperature gradient vanishes and C — 0. On the other hand, as Bi — oo, the
gradient becomes concentrated in the side wall region, and the flow becomes conduction-limited. The
difference in isotherm deformation and circulation intensity for the two modes vanishes again. At the
upper limit of Ma (= 103) and low Bi, the circulation exhibits the same trends. At high Bi, however,
surface temperature is much more sensitive to superheating and acquires a distribution that
increases the thermocapillary stress force relative to subcooling, as shown in figure 34. The diver-
gence between the C-curves in figure 35 shows that this difference in behavior persists as Bi — oo.

One of the most important consequences of thermocapillary flow with small contact angles is
the large dynamic pressure gradient encountered in the contact region. This is illustrated in figure 36
which shows the P4 distributions for Ma = 103 and Rs = 103 at a contact angle of 15°. With
subcooling, surface flow towards the side walls causes a rise in pressure at the corners and a
suction in the middle of the meniscus. With superheating, however, the flow is reversed and causes
a suction at the side walls. In all cases, the pressure distribution in the center of the cavity is
relatively constant, and becomes significant only at the sides of the pore.
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Figure 36. Dynamic pressure versus x; (Ma = 103).

The magnitude of the pressure gradient appears to be a strong function of the thermocapillary
stress, as illustrated by the sensitivity of P, to Bi. Since Ma is held constant, the larger values of Bi
correspond to higher stress forces and circulations in the cavity. Because the circulation for
superheating is consistently higher than that for subcooling, the variation in pressure magnitudes for
the two heating modes is most likely related to the difference in their circulation intensities.

The large pressure magnitudes in the contact region are caused by the accommodation of flow
through an area that becomes increasingly constricted with smaller contact angles. The pressure
must increase to accommodate the higher viscous stress in the side wall region near the corners. It
can be shown using a simple force and momentum balance about the corner that Py << 0 for
superheating and P4 >> 0 for subcooling. The difference in sign is due to the different directions of
thermocapillary stress application. From a physical standpoint, pressure acts as a force applied at
the corner that balances changes in fluid momentum, thermocapillary stress and friction. Because the
momentum change is very sensitive to restrictions on flow area, the pressure gradient is a strong
function of contact angle.

It was shown in section VL.B that contact angle has a notable effect on the modified stress
force. Therefore, one expects any convective motion that depends on surface area and orientation to
be very sensitive to @. The influence of w is particularly important when considering highly wetting
fluids because, as shown in figure 36, it appears to lead to extremely large dynamic pressure
gradients at the meniscus contact line.

To examine the influence of contact angle, Ma and Bi are held at 102 and 10, respectively. The
lower value of Ma is selected to limit deviation from the basic state and emphasize the influence
of @. Figure 37 shows the steady state stream function and temperature distributions for
thermocapillary flow at @ = 75°, 45°, and 15°. The most apparent trends are the suppression of
circulation at larger contact angles and the higher flow intensities associated with superheating.
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Figure 37. Contact angle sensitivity (Ma = 102 and Bi = 10).

The differences between these six cases are summarized in table 5, which in addition to I1
and Bi®,, shows the half-cavity stress force in the x-direction Bi®*, maximum half-cavity
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stream function Wly,y, the circulation C, and the difference in interfacial pressure between the
contact line and cavity center |P4luqx. Since Ma and Bi are the same for all cases, Bi®; directly
reflects the nonlinearity of stress force or ©;.

Table 5. Pore characteristics (Ma = 102, Rs = 103, and Bi = 10).

Mode ) |l IBi© M 1Bi®y] ¥y C 1P 4lmax

Subcool 15° 0.598 | 0.388 | 1.194 | 0.40 6.81 28,260
45° 0.422 | 0.594 | 0.899 | 0.36 4.59 5,670
75° 0.343 | 0.760 | 0.345 | 0.30 3.06 2,057

Superheat 15° 0.603 | 0.454 | 1.198 | 0.51 -7.95 27,480
45° 0.427 | 0.651 | 0.896 | 0.48 -5.69 5,914
75° 0.338 | 0.801 | 0.342 | 041 -4.04 1,901

Bi©# behaves similarly to the basic state in that it tends to increase with a flatter interface.

The total force in the x;-direction, however, decreases dramatically which approximately coincides
with the trend for flow intensity, ['¥l, ;. The nearly linear variation of IW¥l,,,, with I©;], which is
illustrated in figure 28, suggests that circulation is dictated primarily by the magnitude of ©,, and is
_ relatively independent of ©,*. This is reasonable from a physical standpoint because the influence of
©;%, which accelerates fluid in the x, -direction, is canceled out by the ®;* contribution from the other
side of the cavity. This phenomena is manifested by the impingement of fluid in the center which
restricts motion in the x; -direction. It does not apply to flow in the x,-direction which, apart from the
stress conditions along the sidewall and center-line, is less constrained in terms of momentum. The
relationship between circulation and ©, also explains why the flow intensity is larger for lower

contact angles.
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Figure 38. Stress correlation (Ma = 102 and Bi = 10).
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As noted earlier, one of the most important consequences of thermocapillary flow with small
contact angles is the large dynamic pressure gradients in the contact region. This behavior is
illustrated in figure 39 which shows numerically obtained pressure values at the four surface nodes
adjacent to the left side wall for the cases depicted in figure 37. It is apparent tl_lat dynamic pressure
gradient increases dramatically as @ — 0 and diminishes as @ — 90°. In fact with a contact angle of
15°, the pressure can be an order of magnitude higher than the value for a flat interface.

Another important aspect is the slightly larger pressure magnitudes for subcooling. This trend
appears to contradict the results obtained before with Ma = 103 in figure 36. At the lower value of Ma
(= 102), the circulation intensity for superheating is only slightly higher than that for subcooling.
Hence, the pressure gradient is more sensitive to the local thermocapillary stress exerted at the
interline. With subcooling, convection strengthens the temperature gradient, while with
superheating, it is weakened. The higher pressure gradient for subcooling is attributed to the larger
local stress magnitude in the corners.
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Figure 39. Interfacial pressure near interline (Ma = 102 and Bi = 10).

The effect of Bi and w on thermal potential and surface stress at the upper limit of Ma (= 103)
is now examined. Figure 40 shows IT/TI, for subcooling and superheating as a function of @ and Bi.
At lower values of @, the relationship illustrated in figure 34 with @ = 15° still applies. In fact, the
deviation from the basic state increases with larger contact angles. Unlike pure interfacial flow, II/T1,
for subcooling is greater than unity because thermocapillarity tends to augment meniscus heat
transfer by circulating cool liquid from the bottom of the cavity to the middle of the mensicus.
However, this effect is significantly less than superheating which yields a much greater increase in
I1. With both heating modes, I/T1, also increases with Bi due to the stronger circulation intensities
and isotherm convection about the surface.

At higher values of @, however, a drop in [1/T1, is noted for both heating modes. This is
particularly evident for subcooling, but it also applies to superheating at Bi = 102. With flatter
interfaces, the circulation cells in each half-cavity become more constrained by each other. Although
the total stress force increases with Bi, the stress concentration shifts to the sidewalls, and the
force applied in the center, as a proportion of the total thermocapillary force, decreases. Becanse of
the reduction in the local traction in the center, the flow around the impingement region slows, and
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the circulation and temperature deformation become less. This reduction in deformation causes a
drop in thermal potential and shifts the maximum deviation in IT to a lower value of Bi. Recall that
[/T1p — | as Bi — oo for all contact angles.
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Figure 40. TI/T1, versus @ and Bi (thermocapillary flow).

The sensitivity of ©,/0,, to @ and Bi is shown in figure 41. Although the ratio is relatively
independent of o, the variation in @,/0,, with Bi is more pronounced for superheating because the
thermocapillary convection associated with this regime tends to reduce the temperature gradient and
yield a lower modified stress than the basic state. Consistent with the trend observed with pure
interfacial flow, ©,/0,, — 1 as Bi — . This is because the deformation becomes less due to the flat
temperature distribution in the center of the cavity.

The complex relationship for ©,/0;, with subcooling is due to competition between (1) the
increase and shifting of the temperature gradient towards the sidewalls, and (2) the upwelling of cool
fluid from the bottom of the cavity which causes an opposing gradient around the center-line. With
the former effect (1), one would expect ©,/0,, to be consistently greater than 1, which would mirror
the trends for superheating. This effect predominates for low Bi and w, where the influence of
upwelling is small. With increased Bi, however, upwelling lowers the average gradient to a value
less than the basic state. With increased o, the gradient shift is almost totally offset by upwelling.
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Figure 41. ©,/0,, versus w and Bi (thermocapillary flow).
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E. Combined Flow Regimes

Since interfacial flow and thermocapillarity yield opposing circulations when subjected to the
same heating conditions, the combined regime reflects a competition between two convection modes.
The relative influence of each is indicated by the half-cavity circulation C which changes sign
according to the predominance of either regime. With combined flow, the circulation, velocity field,
and surface temperature distribution are dictated by the relationship between Ma, Rs, and Bi. At low
Bi, the surface temperature gradients are small. Consequently, the flow is more sensitive to
variations in Rs than Ma, and it manifests many of the features of pure evaporation or condensation.
For high Bi, the interfacial temperature gradients are larger, and the influence of interfacial flux is
restricted to the interline. The flow in this case becomes less sensitive to Rs, and tends to model
pure thermocapillary behavior.

Figure 42 shows examples of combined mode condensation and evaporation for Ma = 103, Rs
= 10-1, and Bi = 10. With subcooling, the flowfield assumes a circulation pattern similar to its pure
thermocapillary counterpart in figure 29, but it also contains negative-value streamlines representing
the flow of condensing liquid from the interline region to the bottom of the cavity. This flow tends to
shift the vortices on either side of the cavity to the center-line, and causes a distention of surface
isotherms towards the bottom, similar to its pure condensation counterpart in figure 18.

From the standpoint of circulation, C = 46.45 for the combined regime, which is less than the
value of its thermocapillary counterpart (C = 56.24). Although the combined regime is
thermocapillary-dominant, its |IIl value of 0.55 is less than either the pure thermocapillary or
condensation cases (which are 0.62 and 0.56, respectively). This is illustrated in figure 42 by the
difference between sidewall and center-line stream functions at x» = 0, i.e., [AWI, which reflects
mass transfer through the half-cavity. For the combined regime, IAW| = 2.73, which is only slightly
less than the value for pure condensation, IAY| = 2.78.

Subcooling Superheating

x1 x1

Figure 42. Combined convection (Ma = 103, Rs = 10-1, and Bi = 10).
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It is clear that the heat transfer for combined convection does not represent a simple average
or superposition of thermocapillary and condensation effects. Rather, thermocapillarity modifies the
surface temperature in a manner that augments the tendency of condensation to accumulate warm
fluid on the surface. This behavior is tantamount to removing the [Tl-increasing influence of
upwelling in subcooled thermocapillary flow. In combined mode condensation, the cooler center
region that results from upwelling is eliminated by warm condensate in the middle of the cavity.
Without this offsetting influence, the sole action of thermocapillarity is to extend this warm region
toward the corners, thereby lowering the thermal potential relative to pure condensation.

With superheating, the evaporation flux, which is represented by positive-value streamlines,
convects the vortices and liquid toward the corners. The circulation magnitude for this case,
C = —102.31, is lower than its pure thermocapillary counterpart, C = —137.85, but the flow clearly
remains thermocapillary-dominant. The thermal potential also remains the same at i1l = 0.797.
Although the flowfield is thermocapillary-dominant in terms of circulation and thermal potential, the
total mass flowrate across the meniscus IAW| = 3.77 is greater than its pure evaporation counterpart
(IAWI = 3.49) in figure 18, and the surface temperature profile promotes evaporation.

The effect of reducing Bi to 1 is illustrated in figure 43. The lower value of Bi reduces the
surface temperature gradient and thermocapillary stress. Interfacial flow is also higher because of
the increased magnitude of TI. With subcooling, the circulation value of 5.07 indicates a transitional
flow structure quite different from its pure thermocapillary counterpart in figure 27, where C = 16.05.
This difference applies to thermal characteristics, as well. The thermal potential of the combined
regime (IT1l = 1.09) is less than either pure thermocapillary flow (IT1l = 1.18) or pure condensation
(IT1I = 1.13). In addition, the mass throughput of IAW| = 5.42 represents a slight decrease relative to
the pure condensation case of 5.59. As in the case of Bi = 10, thermocapillarity contributes to the
suppression of thermal potential caused by condensation.

Subcooling Superheating

“r

T

Figure 43. Combined convection (Ma = 103, Rs = 10-1, and Bi = 1).
With superheating, the lower value of Bi also yields a circulation (C = 2.70) that reflects a

transition between pure thermocapillarity and evaporation (where C = -28.36 and 19.49,
respectively). Although the positive value of C implies a more interfacially dominant regime than
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combined mode condensation, the thermal potential is basically the same as its pure thermocapillary
counterpart, where II1l = 1.21. Unlike the case of Bi = 10, this value of 1.21 is less than the thermal
potential for the pure evaporation case, where I[1l = 1.25, and is only slightly greater than the basic
state value of 1.20. Consequently, the mass throughput for the combined regime IAY| = 5.84 is less
than the pure evaporation IAWI| value of 6.11. The opposing action of thermocapillary circulation
restricts interfacial convection and isotherm compression at the surface, thus reducing evaporation.

The influence of reducing Ma is illustrated by comparing figure 44 with figure 43. With
subcooling, the circulation change from 46.45 to -4.66 when Ma is decreased from 103 to 102,
respectively, represents transition to a slightly condensation-dominant flowfield. Although the low
magnitude of C at Ma = 102 implies that neither regime is completely dominant, the vortex driven by
interfacial stress disappears and is replaced by a vertical flow structure very similar to figure 18. In
fact, ITIl and IAWI increase to 0.56 and 2.77, respectively, which are the same values as the combined
regime's pure condensation counterpart. Reduction of Ma clearly decreases the suppression of
thermocapillarity on IT1l, and the flowfield becomes condensation-dominant in terms of heat and
mass transfer.

Subcooling Superheating

Figure 44. Combined convection (Ma = 102, Rs = 10-1, and Bi = 10).

With superheating, the circulation change from -102.31 to 4.00, when Ma is decreased from
103 to 102, represents a transition to evaporation-dominant flow. Recall that at Ma = 103, the
combined regime enhanced evaporation by raising the thermal potential with respect to pure
evaporation (i.e., [[Tl = 0.80 for combined mode, while ITIl = 0.72 for pure evaporation). Upon lowering
Ma, the circulation patterns of both modes offset each other, thereby reducing convective effects near
the surface. This is manifested by a drop in IT1l to 0.67, which is slightly higher than the basic state
value of 0.61 but less than the pure evaporation value of 0.72. It is also manifested by the flowrate
IA¥] = 3.13, which is less than either case in figures 41 and 18. It appears that the convection that
drives isotherm deformation relative to the basic state is neutralized as C — 0.

The effect of raising Rs is shown by comparing figure 45 with figure 44. With both

condensation and evaporation, increasing Rs from 10! to 1 produces a thermocapillary-induced
vortex and an approximately order-of-magnitude reduction in interfacial flow. The flow transitions
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from a structure dominated by interfacial flow (i.e., C = -4.66 for subcooling and C = 4.00 for
superheating) to a thermocapillary-dominant structure (i.e., C = 5.72 for subcooling and C = -7.45 for
superheating).

Subcooling Superheating

Figure 45. Combined convection (Ma = 102, Rs = 1, and Bi = 10).

The thermal potential for subcooling increases from 0.56 to 0.59 due to the diminished
accumulation of warm condensate on the meniscus, but it is still less than the ITIl associated with
the basic state. With superheating, however, ITI| drops to a value close to the basic state. Since
thermocapillarity and interfacial flux both increase thermal potential, an increase in nonequilibrium
(or decrease in 1/Rs) should reduce the nonlinear influence of Bi on temperature. Note that increasing
interfacial resistance from 10-! to 1 drops the half-cavity throughput IA¥| from 3.13 to 0.35 for
superheating and from 2.77 to 0.29 for subcooling.

The influence of Ma, Rs and Bi is summarized in figure 46 which shows circulation versus Rs
for Ma = 10 and 102, and Bi = 1, 10 ,and 102.

To facilitate comparisons, a corrected circulation C* is used, where C* = C for
superheating/evaporation and C* =-C for subcooling/condensation. With these definitions,
thermocapillary-dominance is indicated when C* < 0, while interfacial-dominance occurs when
C* > 0. The transition region is defined to include not only the crossover point at C* = 0, but also the
bounds where C* changes from being relatively independent of Rs (i.e., Rs < 1) to being strongly
dependent on Rs and Bi (i.e., Rs > 3x10-2 to 10-1).

At the lower limit of Bi (= 1), thermocapillary flow is relatively weak compared to either
condensation or evaporation. The low interfacial temperature gradient yields a very low circulation
intensity in the thermocapillary-dominant region. The influence of Ma in this case is vanishingly
small as illustrated by the negligible difference in C* between Ma = 10 and 102. For this range of Ma,
the transition regime occurs between 0.5 < Rs < 10. At lower values of Rs (i.e., Rs < 0.1) interfacial
flow clearly dictates circulation intensity.
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Figure 46. Half-cavity circulation versus Ma, Rs, and Bi.



With superheating, the influence of Ma on C* essentially vanishes for Rs < 10-1, and the flow
becomes solely a function of Bi and Rs. The increasing accumulation of warm liquid as Rs — 0
reduces the interfacial temperature gradient and diminishes the influence of Ma. This behavior,
however, does not apply to subcooling, which assumes a lower C* and distinct Ma dependency for Rs
< 10-1. As mentioned before, the lower C* is due to the suppressing influence of condensation on ITTI.
This reduction in II1l is complemented by an associated increase in Bi®; and thermocapillary stress.
Thus, the differences in Ma persist at low Rs, and tend to augment the suppression of IIT] at larger
condensation rates.

At higher Bi (= 10), the increased temperature gradient shifts the transition to interfacial
dominance to lower values of Rs. In addition, the values of Rs representing the transition region are
influenced much more by Ma. In general, the point at which C* becomes independent of Ma occurs at
a lower value of Rs. At the lower limit of Ma (= 10), the transition region shifts slightly to the left due
to the very small circulation intensity. At higher Ma (= 102), the shift to a range of 0.03 < Rs < 0.3 is
more noticeable due to the increase in thermocapillary circulation strength. Although it cannot be
discerned from the plot, one expects C* for Ma = 10 and 102 to converge as Rs — 0.

Another aspect of figure 46 is the different slopes exhibited by the subcooling and
superheating curves in the transition region. As discussed previously, this behavior is due to the
opposite influence of evaporation and condensation on interfacial temperature. With superheating
and evaporation, interfacial temperature and ITTl increase steadily with lower Rs due to isotherm
compression. With subcooling, however, I[1l is reduced due to distension of isotherms towards the
bottom of the cavity. The Rs value at which this behavior becomes noticeable tends to decrease at
higher Bi. At Ma = 102, the crossover point occurs near the transition C* = 0. This means that over
the entire range of Rs and Bi, C* for superheating is always greater than subcooling. This is not the
case at the lower limit of Ma. Here, it appears that there are values of Rs at which C* is greater for
condensation.

A further increase in Bi to 102 yields the same trends as before. Here, however,
thermocapillarity is even greater as reflected by the lower transitional ranges. The transition from
thermocapillarity to interfacial flow at Ma = 10 occurs at Rs = 0.5, while at Ma = 102 it occurs at Rs =
0.05. The temperature suppression of condensation is also more evident and creates a distinct
disparity in the C* values for subcooling and superheating in the interfacially dominated region. With
this combination of parameters it appears that the influence of thermocapillarity persists for Rs < 10-2
since the curves do not seemingly converge. However, it is expected that the convergence noted
before will occur as Rs — 0.

The influence of Rs, Bi, and heating mode on thermal potential at Ma = 102 is shown in figure
47. With superheating, both thermocapillarity and evaporation augment one another in terms of their
influence on ITTl. Since the Marangoni number examined here is too small to effect appreciable
convection-induced deformation of the temperature field, the value of Tl for Rs 2 1 (thermocapillary-
dominant regime) is essentially constant and equivalent to the basic state value. For Rs < 1,
however, I[1l increases relative to the basic state due to the compression of isotherms towards the
surface. One also sees that the increase in IT1l is greatest at a Bi close to 10. This is consistent with
trends for pure evaporation in figure 23, which indicated a maximum increase between 1 < Bi < 10.
With condensation, the surface potential in the thermocapillary-dominant region still closely
approximates the basic state because of the small isotherm deformation. With reduced Rs, however,
ITTI decreases due to the previously mentioned increase in surface temperature.
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Figure 47. Il versus Rs and Bi (combined convection).

In section VLD, it was found that circulation and interfacial pressure gradient were very
sensitive to contact angle. A similar analysis of combined mode condensation and evaporation is
performed by examining contact angles of 15°, 45°, and 75°, while holding Ma = 102, Rs = 1012 =
0.31623 and Bi = 10. The corresponding stream function and isotherm plots for these cases are
illustrated in figure 48, and a summary of important flow parameters is shown in table 6. A
comparison between tables 6 and 5 indicates that the influence of @ on pure thermocapillary flow and
combined convection is generally the same. For instance, ITIi, ICl and 1P gl are greater at small
contact angles, and IC| for all values of @ is consistently higher for superheating. With combined-
mode subcooling, the suppression of upwelling by condensation results in a ITIl lower than either the
pure thermocapillary or condensation cases. Alternatively, with superheating the mutually
augmenting effects of evaporation and thermocapillary stress yield higher thermal potentials than
with pure thermocapillary convection.

The most notable difference between the convection modes in tables 5 and 6 is the
substantially higher pressure gradient associated with combined flow. Numerically obtained values
at the four nodes adjacent to the sidewall are shown in figure 49. Although the circulation
magnitudes in table 6 are approximately 40 to 50 percent less than their counterparts in table 5, the
values of [P4l,,qx are between 1.5 to 2.5 times higher than pure thermocapillary flow. The difference is
greatest for subcooling with @ = 15° in which the presence of condensation raises IP4l,qx by a factor
of 2.47. This contrasts with the smallest increase which occurs with superheating at @ = 15°. Here,
|P 4l,nax increases by a factor of 1.43.

Regardless of the contact angle or heating mode, combined convection yields a higher
interfacial pressure gradient than either its pure thermocapillary or interfacial counterparts. This is
because both modes yield similar pressure distributions near the interline, and the combination of the
two represents a superposition of their distributions. For instance, the vertical flow structure of pure
condensation yields a positive pressure gradient in the x,-direction. Because the fluid is wetting, the
interline pressure must be higher to compensate for its increased distance from the base of the
cavity. With pure subcooled thermocapillary flow, the interline pressure is also higher to
accommodate the high momentum flux through this region. In both cases, the interline pressure is
greater at lower contact angles.
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Figure 48. Contact angle sensitivity (Ma = 102, Rs = 1012, and Bi = 10).




Table 6. Pore Characteristics (Ma = 102, Rs = 10172, and Bi = 10).

Mode ® ITTI IBi®#l BiO;] Wlu C 1P gl ax

Subcool 15° 0.576 | 0.419 | 1.233 | 0.06 3.30 | 69,930
45° 0.403 | 0.621 | 0.925 | 0.09 2.81 11,600
75° 0.321 | 0.784 | 0.354 | 0.07 1.73 4,247

Superheat 15° 0.620 | 0.419 | 1.166 | 0.07 -3.20 | 39,490
45° 0.445 | 0.621 | 0.872 | 0.12 -3.23 9,447
75° 0.359 | 0.773 | 0.334 | 0.11 -2.02 3,162
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Figure 49. Interfacial pressure near interline (Ma = 102, Rs = 10-1/2, and Bi = 10).

} F. Summary

In this section, the steady-state thermophysical behavior of a two-dimensional pore
subjected to superheated and subcooled boundaries was examined. The free surface was assumed to
be circular and wetting, and was treated solely as a function of contact angle w. For analysis of the
basic state, several parameters were derived which characterize the nonlinear influence of Bi and @
on interfacial transport and thermocapillary stress, namely thermal potential IT and modified stress
6;. It was shown that integrating 6; along the surface yields a net Re-normalized traction, Bi®;,
which acts in either the +x; (subcooling) or —x;-direction (superheating). Due to the relative
orientation between the surface and internal temperature gradient, this force increases as @ — 0 or
Bi — oo, but vanishes as @ — 90° or Bi — 0. It was also found that ITTI is larger for smaller contact
angles, but decreases as Bi — oo,

Pure evaporation and condensation establish vertically oriented flowfields in the cavity. The
flowfield strength is characterized by the mass throughput and circulation in each half-cavity, and, for
a given w, Bi and Rs, is always greater for evaporation. With evaporation, the positive deviation in TT
from the basic state reflects the convection of heated liquid towards the surface, which strengthens
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and reinforces interfacjal transport. With condensation, the deviation is negative due to the
accumulation of warm condensate which suppresses mass flow into the cavity. The interfacial
temperature increase associated with evaporation flattens the temperature profile and reduces the
stress force relative to the basic state. The temperature rise associated with condensation, however,
causes a peaking about the center-line which increases stress.

Pure thermocapillary flow is characterized by a pair of counter-rotating cells about the center-
line. The strength of each cell is characterized by the half-cavity circulation which tends to increase
in magnitude with larger Ma and Bi. The circulation arising from thermocapillarity is opposite in sign
to that for interfacial flow. In addition, the magnitude is always less for subcooling due to this
regime's higher viscous losses along the side walls. It was found that superheating increases
interfacial temperature and T1 relative to the basic state by convecting heated liquid from the
sidewalls towards the center-line. With subcooling, a more complex behavior arises from the
competition between surface convection and upwelling. At low circulation intensities,
thermocapillarity extends the heated region along the surface and reduces ITTl. At higher circulations,
however, this effect is increasingly offset and eventually overwhelmed by cool liquid from the bottom
of the cavity which causes a net increase in ITIl. This increase is always less than the positive
deviation associated with superheating.

Another important result was the increase in circulation intensity with lower contact angles
and proportionality of cell strength to the x2-component of the thermocapillary stress force. It was
also found that smaller contact angles yield significantly larger dynamic pressure gradients along the
surface and magnitudes at the interline. With subcooling, pressure increases towards the sidewall,
and assumes a positive value with respect to the base of the cavity. With superheating, the gradient
is negative, and yields a large negative value at the contact point.

The flowfield for combined-mode convection reflects a competition between thermocapillary
and interfacial flow. With superheating, the circulations for evaporation and thermocapillarity are
opposite, but both modes promote thermal potential and suppress the surface stress force.
Consequently, the TT values in the thermocapillary-dominant regime yield higher evaporation rates
than pure interfacial flow. In the transitional region, however, the opposing circulations for
thermocapillarity and evaporation suppress convective effects, and yield surface temperatures
approximately equivalent to the basic state. In the interfacially dominant regime, the flow and I1
behave the same as in pure evaporation. The influence of thermocapillarity and Ma vanishes with
decreasing Rs because of isotherm compression and reduction of the surface temperature gradient.

The behavior of subcooling is complicated by the tendency of condensation to promote surface
stress. In the thermocapillary-dominant region, the flow is very similar to superheating, but the
positive deviation in TT is much less. In the transitional regime, two important effects occur that
cause a departure in behavior. One is the reduction in thermal potential and restriction on
condensation rate caused by accumulation of hot liquid around the meniscus center-line. The other is
the reinforcement of thermocapillary flow due to the increase in temperature gradient. Because of
these effects, the transition to an interfacially dominant flow structure occurs at a lower value of Rs
than superheating. In addition, the sensitivity of circulation to Ma persists in the interfacial-dominant
regime because of condensation’s reinforcing effect on thermocapillary convection.

It was also found that the contact angle can influence the transition between thermocapillary

and interfacially dominated flow and that the flowfields at lower o tend to be more thermocapillary-
dominant. Another important observation was the dramatic increase in interfacial pressure gradient
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at low @. This occurs because the combined-mode pressure distribution represents a superposition
of the pressure fields associated with each mode, which share the same general distribution.

VII. SURFACE DEFORMATION

A. Introduction

In sections IIT and V, the causes of surface deformation were discussed, and in section IV, a
method for solving meniscus geometry was developed. In the steady flow analysis of section VI,
however, this report followed the approach of other researchers and neglected deformation of the free
surface by assuming vanishingly small Capillary and Crispation numbers. This assumption would be
valid except for several important differences between the problem addressed in this study and those
performed before.

First, the length-scales considered here are extremely small (i.e., | um < D < 102 um), and
the scaling analysis has shown that Ca, which varies inversely with dimension, can be significant for
D < 103 um. Secondly, comparisons of the interfacial pressure distributions in section VI indicated a
dramatic increase in the magnitude of Py near the interline at low contact angles. Most prior studies
of thermocapillary flow with deforming interfaces considered liquid with high contact angles
(w ~ 90°) or pinned end locations. The surface pressure gradients for these cases, as verified in
section VI, were probably small. With low contact angles, however, the pressure gradients may be
substantial enough to cause significant deformation, even at moderate to low values of Ca. A third
major difference is that previous work in thermocapillary flow concentrated on either combined
thermocapillary/buoyancy-driven convection or thermocapillarity alone. Hence, the added influence of
vapor recoil on float-zone type surfaces has not been adequately studied.

In the interest of limiting computational time, it is desirable to neglect surface deformation,
since it adds another iteration to the steady-state solution. This is especially true if it has only a
second-order effect. However, if it occurs to even a moderate extent, then it should be considered for
several reasons. First, in a system whose operation depends on sustaining a pressure difference
between a vapor and liquid, such as a screened LAD, extreme meniscus deformation could result in
retention loss. The normal stress balance in equation (45) includes several terms that compete in
dictating interface curvature. With certain parameter values, a combined flowfield/surface solution
may diverge in the iteration process, thereby indicating a numerical or physical instability.

In addition to altering the exposed surface area for heat transfer, a deforming interface may
also yield temperature distributions substantially different than the static nondeforming state.
Depending on the magnitude of the variation, this may cause a large deviation in heat transfer, which
would have ramifications for a system involving phase change across a porous interface.

Before attempting simultaneous solution of the flowfield and surface, it is desirable to
estimate the approximate deformation associated with each stress term in equation (45) and the
flow regimes covered in section VI. This points to the conditions leading to mechanical non-
equilibrium of the surface, and enables a more definitive comparison of terms in the normal stress
equation. The approach involves using the interfacial velocities, pressures and temperatures
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obtained for the nondeforming cases in section VI to calculate new surfaces based on the numerical
integration procedure described in section IV.C.

This approach is equivalent to assuming that the flowfield and temperature are independent of
surface geometry. Although it is probably adequate for small deformations (i.e., Ca = 0 and Cr ~ 0),
such an assumption would lead to erroneous results if the deformation was high. If the first-order
evaluation indicates significant deformation at values of Ca, Cr, and Vr within the ranges identified in
the section V, then the coupled solution must be considered. In addition, extreme deformation in the
form of surface inflection points could represent sources of mechanical nonequilibrium.

B. Surface Tension Dependence

Surface tension variation along a nonisothermal meniscus will contribute to deformation not
only through the convection arising from thermocapillary stress but also the adjustment of capillary
pressure to changes in temperature. The latter effect is manifested by the (1-Cr T)-! term in
equation (45), where Cr represents the sensitivity of surface tension to temperature. Warmer
regions of the surface, T > 7;, will assume larger curvatures x (= da/ds) to offset the reduction in
surface tension. The conditions imposed by Cr are evinced by expressing y in terms of Crand ;.
Rearranging and substituting equation (43) into equation (26) yields:

c
_ E’}'—l’ T-T)+7, . (124)

At the maximum temperature, T = Ty = IAT! + T, which when substituted into equation (124)
yields:

y=7v(1-Cr) . (125)

For a normal fluid in which 9y/dT < 0, Cr must be less than unity to ensure that y <y;.
Having Cr > 1 represents a situation where 0y/dT > 0 and Y > v;. A limitation of the linear equation
of state for vy, equation (26), and definition of Cr becomes obvious when Cr = 1. In this case, the
maximum temperature limit 7} corresponds to the critical temperature, and with superheating or very
high Bi, y vanishes and x — e at some point on the surface. Thus, the condition of Cr = 1 indicates a
need for either a higher-order approximation for y or a critical state model of the surface. The
parameter bounds from section V, however, indicate that the value of Cr is low enough to justify use
of a linear approximation. In addition, it will be shown that the influence of Cr only becomes apparent
for Cr > 0.9, which is well above the limits expected for a normal fluid.

The first-order influence of Cr is examined by applying a simplified version of equation (110)
in which all terms, besides (1-Cr T)-1, are neglected. Since the only factor causing deviation from a
circular profile is T = T(x; ), the relationship is:

_ox _ _ X
K= os 1-CT (126)
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Employing the approach outlined in section IV.C, one calculates contact angle estimates by
integrating along the surface and varying Z until the contact angle condition at Ix'l = 0.5 is satisfied.
Surface tension-induced deformation is first examined using the basic state interfacial temperature
distributions (Ma = 0 and Rs = o). Half-cavity meniscus contours for Bi= 1, 10 and 102, and Cr=0.5,
0.9, 0.99 and 0.999 are shown in figure 50. The responses to the two heating modes are opposite.
With subcooling, the temperature at the center-line (x' = 0 in meniscus-centered coordinates) is a
maximum and decreases to the minimum 7 at the side walls (Ix'l = 0.5), that is d7/dx' < 0. Because
of the lower surface tension in the middle of the cavity, the equilibrium surface assumes a higher
curvature relative to the side wall region. At low Bi, the effect is small, even at high Cr, because
temperature remains close to the minimum limit along the entire surface. At high Bi, the temperature
in the center approaches the maximum 7 — 1 and the surface becomes more sensitive to Cr.
Although the deformation appears to be quite large at high Bi, it is still effectively negligible for Cr <
0.5.

With superheated boundaries, d7/0x’ > 0, and temperature decreases towards the center-
line. Unlike subcooling, the condition of maximum curvature occurs at the side wall since yis a
minimum in this region. Additionally, the higher surface tension in the center requires a lower
curvature to maintain stress equilibrium. The net result is a flattening and raising of the meniscus
with respect to the contact line at Ix'l = 0.5. At low Bi, the temperature remains close to the side
wall value along the entire surface and is more sensitive to variations in Cr. At higher Bi, however,
the lower average temperature yields a surface that is less sensitive to Cr.

The influence of convection due to thermocapillary stress, evaporation, and condensation on
y-induced deformation reflects the departure of interfacial temperature from its basic state
distribution. As shown in figures 21 and 22, evaporation and condensation both increase the average
temperature of the interface. This tends to reduce the average temperature gradient for evaporation
but increases it for condensation.

The effect of pure interfacial flow on surface geometry is shown in figure 51 for Bi=1 and Rs =
10-1, Although the differences are quite small, condensation appears to increase deformation relative
to the basic state, while evaporation decreases it. The surface is also more sensitive to Cr for both
heating modes because of the increase in average temperature. Although it is not shown, the
deformation at high Bi (= 102) is the same as the basic state, because the temperatures for all three
regimes are essentially equivalent. Note that the influence of Cris negligible for all cases in which Cr
< 0.9.

The sensitivity of surface morphology to pure thermocapillary flow with Ma = 103 and Bi= 10
is shown in figure 52. Unlike the previous cases, the thermocapillary convection associated with
subcooling tends to lower interfacial temperature relative to the basic state, while superheating
raises it. Consequently, the subcooling regime exhibits less sensitivity to Cr than its basic state
counterpart in figure 50. The deformation associated with superheating, however, behaves very
similarly to the basic state at Bi = 10.
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Figure 51. Surface tension sensitivity (Ma =0, Rs = 10-1, and Bi = 1).

C. Vapor Recoil Dependence

The term “vapor recoil” refers to the momentum change exerted on the meniscus due to
liquid/vapor phase change. The recoil force is represented by the VrT? and VrA(T?) terms in
equations (45) and (110), respectively.
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Figure 52. Surface tension sensitivity (Ma = 103, Rs = 103, and Bi = 10).
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For both heating modes, recoil varies with the square of the temperature difference, and is
always positive. Regardless of the direction of mass transfer, it tends to raise surface curvature
towards the side walls and yields a force pointing into the liquid. From the jump mass balance, we
know that p,(V;n;), = p;(V;n;);. Because fp = pi/py >> 1, the magnitude of the vapor momentum flux,
Py = j(Vin;)y, is always greater than that of the liquid, P, > P;, regardless of their relative directions.
With evaporation, the difference between momentum entering and exiting the surface is negative
P—-P, < 0, and yields a net force opposing the direction of flow. With condensation, the net
momentum entering the surface is P,—~P;. Since each of these terms is negative, P,—P; < 0, and the
net force again points into the liquid.

The effect of recoil is examined using another simplified version of equation (112), namely:

x=%—?=E+VrA(T2) . (127)

As before, the basic state temperature distribution is employed as an initial reference.
Although this case lacks the influence of internal convection, it does enable a consistent comparison
with section VIL.B. Figure 53 shows equilibrium surface geometries for Bi = 1, 10 and 102. The
temperature magnitudes for superheating and subcooling are equivalent and should yield the same
recoil force distribution. The disparity between the subcooling and superheating curves in figure 53
are attributed to slight differences in the steady-state numerical convergence.

Ignoring these discrepancies, one sees that over the entire range of Bi, raising Vr tends to
reduce curvature in the middle of the cavity and flatten the surface relative to the contact line. Since
d(A(T?))/9x' > 0, the recoil contribution to da/ds increases toward the side wall. That is, the
curvature near the side walls must be higher to compensate for the increased normal force directed
into the liquid. At high Vr, the center-line curvature can become negative and form an inflection along
the meniscus.

It is evident from figure 53 that the sensitivity to Bi is maximized between 1 and 102, This is
due to the manner in which A(72) = T2-T,2 varies along the surface. At the lower limit of Bi (= 1),
interfacial temperature, mass flux and A(72) follow a moderate variation and increase towards the
side wall. The surface assumes a negative curvature in the center to accommodate the 15° contact
angle constraint and the increasingly positive contribution of A(T2). At higher Bi (= 10), this
variation is more pronounced, thus causing a larger change in curvature. Above a certain value of Bi,
the interfacial temperature assumes a flat distribution in the center followed by a sharp increase or
decrease at the interline. This is reflected in the plot for Bi= 102. Near the center-line, the
temperature is low and fairly constant, and the contribution to curvature is negligible A(72) = 0.
Although A(T?) rises sharply in the side wall region, its influence on overall curvature is slight.
Hence, the deformation diminishes compared to the lower values of Bi.

The influence of thermocapillary convection is illustrated in figure 54. For these plots, the
surface temperatures corresponding to Ma = 103 and Rs = 103 is used. Although interfacial flow was
ignored in these steady-state solutions, the temperatures still reflect the general influence of
thermocapillary convection.

90



1.5

Subcool Bi'=1 Superheat

1.5 Subcool Bi= 100 Superheat

2
1.0 ]
- Vri=50 | Vr=50
] 10 10
) S~————
- 0
S0 2 4 6 8 )
x1

Figure 53. Recoil sensitivity (basic state temperature).



92

1.5 T
] Subcool Bi=1 Superheat
x2
[yoms0
r—=
1.01 Vr= 50
10 {10
5——"_"5
0 0
.5 ' ] 1] 1
1.5 —T
Subcool Bj =10 Superheat
x2
Vr=30
Vr=50
1.0
] 20
10 —1 5
S 1
__,-——/
0
5 T r
1.5 T
1 Subcool Bi=100 Superheat
x2

Figure 54. Recoil sensitivity (Ma = 103 and Rs = 103).




With subcooling, thermocapillary stress shifts the temperature gradient toward the side wall
and flattens the temperature distribution in the center of the cavity. This is similar to increasing Biin
that the meniscus becomes less sensitive to recoil. One also sees that the deformation at Bi= 10 is
much less than the basic state, because of the temperature depression associated with upwelling.
This phenomenon yields a situation where the recoil contribution decreases from the center-line to
the point of maximum surface temperature. This trend reverses beyond the temperature maximum
and causes a sharp upturn in the surface near the side wall. At the upper limit of Bi(= 102),
deformation is similar to the response based on the basic state in figure 53.

Figure 54 shows an opposite trend with superheating. The difference is due to the
temperature trough in the middle of the cavity that arises from convection along the surface. The
value of A(T2) at the center-line is consequently higher and causes a large change in curvature in the
middle of the pore. At low Bi (= 1), the deformation is much greater than the basic state. At higher
Bi (= 10), the deformation is large enough that a single-valued solution at Vr = 50 does not exist.
The inability to account for a multivalued surface is due to the limitation of the numerical procedure,
in which T is expressed as a function of x; rather than s. In cases where the surface loops over itself
between 0 < Ix'l < 0.5 to satisfy the acute contact angle constraint at Ix'l = 0.5, the approach of
expressing T(x1), P4(x}), etc. is completely inaccurate. However, it is likely that such configurations
are inherently unstable and susceptible to pinching off near the points where dy(s)/dx' — o> and
d2y(s){dx2 > (. At the upper limit of Bi (= 102), the influence of the temperature trough diminishes
and the deformation closely approximates behavior of the basic state-based response.

The sensitivity of deformation to pure condensation and evaporation is shown in figure 55.
Unlike the basic state behavior in figure 53, the response to each heating mode is quite different.
With condensation, accumulation of warm liquid around the center-line increases the temperature
gradient substantially. This, in turn, yields a larger change in AT? and o from Ix1=0 to x'1 = 0.5, and
more deformation than the basic state. The change in AT? and o is related to the modified stress
sensitivities shown in figure 24.

With condensation, the increase in ©, relative to the basic state is highest at low Biand
decreases as Bi — oo. This trend is reflected in figure 55 by the deformation for Bi= 1 being higher
than that for Bi = 10. Although this appears to contradict the trends in figure 53, the deformation at
Bi= 10 is still much higher than its basic state counterpart. Consistent with figure 24, one sees that
the deformation at Bi = 102 is essentially the same as the basic state distribution.

With evaporation, the temperature gradient decreases with respect to the basic state. This is
illustrated in figure 24, which shows that ©,/0;;, < 0, and ©,/0,; = 1 as Bi — ==, The consequence
of this is that at low Bi (= 1), the deformation is considerably less than its basic state counterpart.
With higher Bi (= 10), surface deflection is greater, but is still restricted by the flattened temperature
profile. At the upper limit of Bi (= 102), the greatly diminished convection yields a surface equivalent
to the basic state-based response.

93



94

1.5

x2

1.0 1

Subcool Bi=1

]

Vr=30
20—

10— Vr=50

5

1 —

Superheat

1§ v L)

Subcool  Bi =10

Superheat

L)

Subcool  Bj = 100 Superheat

Figure 55. Recoil sensitivity (Ma = 0 and Rs = 10-1).




D. Dynamic Pressure Dependence

In chapter VI, it was shown that fluid motion can yield substantial pressure variations along
the free surface. This pressure P, falls directly out of the Boussinesq approximation and is best
viewed as a deviation from hydrostatic pressure. The influence of P4 on surface morphology is
manifested by the CaAP, term in equation (110). Ca arises as the dimensionless coefficient for Py
due to our application of viscous scales. This is advantageous because it permits a direct comparison
with the effects of vapor recoil and viscous stress. CaAP, is expressed as a difference to emphasize
that the solution depends on pressure change along the surface and not the absolute value per se.
This form underscores the fact that the P, contribution at the center-line is included in the initial
curvature estimate, and that the change in curvature as Ix'l — 0.5 is dictated by the gradient of Py
along the surface.

The results of section VI showed that the pressure variation becomes significant at low
contact angles. This was illustrated in figures 36 and 39 which showed that in all cases the pressure
magnitude is relatively small in the center of the cavity but increases dramatically at the side walls.

To assess the first-order influence of P4, one employs the following simplification of equation
(112):

K=%—‘;‘=E—CaAPd , (128)

The sensitivity to P4 is examined using the pressure distribution for pure thermocapillary flow
in which Ma = 103 and Rs = 103. The magnitude of the pressure variation, as illustrated in figure 36,
increases dramatically at the side walls and becomes more pronounced at high values of Bi. The
influence of this change on surface geometry is shown in figure 56, which shows equilibrium surfaces
for Bi =1, 10, and 102,

With subcooling, the pressure increase towards the side walls is manifested as a suction that
pulls the surface down in the middle of the cavity. The magnitude of the deformation becomes larger
with increasing Ca, and, like the effect of surface tension in section VIL.B, causes a depression in the
middle of the meniscus. Equation (128) shows that a positive P4 gradient translates to an
increasingly negative contribution to curvature. Since the center-line curvature is positive, this can
yield an inflection in the surface at a high enough value of Ca. This inflection is evident near the side
wall region of the curve corresponding to Bi = 1 and Ca = 1.5x10-4. It occurs close to the side wall,
since the pressure is comparatively much smaller along the rest of the surface. Another interesting
aspect of the inflection is that it causes a negative curvature at the contact line. It was found to be
difficult to obtain a solution for Ca greater than this limit. As with recoil, the surface becomes
multivalued at a point close to the side wall above a certain value of Ca.

The surface is much more sensitive to Ca at higher Bi because of the larger pressure gradient.
This is evidenced by the surfaces in which Ca = 3.5x10-5 and 2.0x10-3 for Bi = 10 and 102,
respectively. It also appears that the magnitude of the center-line depression depends on the total
pressure change from x'= 0 to Ixl = 0.5, while the location of the inflection leading to a multivalued
condition depends on the actual gradient. That is, a2 more uniform change in pressure will shift the
inflection point away from the side wall.
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These trends have important ramifications for the mechanical equilibrium of surfaces with
zero contact angles. When @ = 0, the surface is already at a multivalued limit on the side wall.
Hence, any stress-related effect that provides a negative contribution to curvature will be impossible
to accommodate using the solution procedure in this study.

The deformation in response to superheating reflects a positive contribution to curvature, and
behaves similarly to recoil. Here, the negative dynamic pressure gradient causes a suction at the
side walls that raises the meniscus center relative to the interline. From a numerical standpoint, the
positive contribution to curvature requires a reduced and possibly negative curvature in the center.
At low Bi (= 1), the meniscus contains an inflection at Ca = 10-3, which is nearly an order of
magnitude higher than the maximum Ca identified for subcooling. In addition, this value does not
appear to be close to the multivalued limit, as in the case of subcooling. Although the overall
pressure gradient associated with superheating is greater than subcooling, the surface can support a
larger change in contour angle and higher values of Ca before the multivalued limit is reached.

The sensitivity to Ca increases by an order of magnitude from Bi=1 to Bi= 10 and 102. In all
of the superheating cases, most of the curvature change occurs near the side wall, while along the
rest of the surface, it remains fairly constant. As a consequence, the inflection point, as with
subcooling, lies close to the side wall. We also note that at very low Ca (<10-5), the meniscus
deformation is rather slight and the magnitude of variation is the same for subcooling or
superheating. At higher Ca, the surface for subcooling is much more sensitive to pressure variation.

The first-order surface response based on the steady-state solution for combined
thermocapillary/interfacial flow (Ma = 103, Rs= 10-! and Bi = 102) is shown in figure 57. As noted
before, the surface pressure distribution reflects a superposition of superheated thermocapillary flow
and evaporation for the superheated case, and subcooled thermocapillary flow and condensation for
the subcooled case. Consequently, the side wall gradients for these regimes are greater and yield an
increased sensitivity to Ca.
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Figure 57. Pressure sensitivity (Ma = 103, Rs = 10-1, and Bi = 102).
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E. Viscous Stress Dependence

The effect of viscous stress on surface morphology is represented by the 2CaV; jn;n; term in
equation (45). Previous studies have applied it directly in this form, thus requiring calculation of the
velocity gradient normal to the surface. With the integral method used here, it is preferable to
transform the term into an expression that does not involve the velocity gradient. This improves
accuracy and separates the two components of viscous stress which occur only when the surface is
curved and volatile. One first employs the chain rule and expands viscous stress into the following
form:

v.pni=(Vn) in-Vinn;; . (129)

(Vin;) jnj, is the normal gradient of the mass flux. Note from the equations for j and interfacial
equilibrium (equations (7) and (40), respectively), that Vin; = T/Rs. Taking the normal gradient of
this relationship and expressing T jn; in terms of equation (54) yields the final result which equates
the flux gradient to temperature:

(Vin)) jn;=-5T . (130)

SvT is termed the "flux component” and represents stress arising from flow normal to the
surface. Sv is the so-called viscous stress parameter and is defined as Sv = Bi/Rs. The normal vector
product of the Vinjn;; term in equation (129) can be converted by n;n;; = -s;s;;, and substituted with
equation (130) into equation (129) to yield:

Vinin=-SvI+Vs;s;; .

(131)

Visisjj is the so-called “curvature component.” With a flat nonvolatile surface, both
components vanish and remove the influence of viscous stress. For instance, 1/Rs = 0 and Sv = 0 for
a nonvolatile surface. With a flat interface, n; and s; are constant, and the condition s;; = 0 must hold.
Although the V;s;s;; term in equation (131) only makes a contribution when the surface is curved, it
can also vanish if the tangential velocity is negligibly small, and the flow is normal to the surface.

The flux component is expressed in a form suitable for the numerical procedure described in
section IV. However, the unit vectors in the curvature component can be expressed more
conveniently by expressing the tangent vector in terms of contour angle. That is, s; = cos ad;; +
sin ad;; and s;; = (-sin o §;;+c0s o d;2)d0/dx;. Substituting these equations into V;s;s;; yields:

cosza—sinza)_ag_ (132)

=Vc0sa+Vsina( > .
W 2 ) cosasin /) os

Visisjj

One sees that this relation is inappropriate for flat regions in which a = 0. The value near x' =
0 is solved by replacing do/ds with cos ada/dx;. Upon expanding the expression and taking the limit
as x; — 0.5 (or x’ — 0), one sees that cos o — 1 while sin a — 0. This leaves an equation that
becomes indefinite as x’' — 0, that is:

m(Vis;s; ) = cos? o 42 (133)

no

Equation (133) is solved by applying L'Hopitals rule and differentiating both numerator and
denominator by x;. After dividing the dov/dx; terms out and noting that cos o = 1, one is left with:
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}.iLnO(ViSisj,j) =Vi1 - (134)

Visis;j becomes important only when the curvature or tangential component of velocity is high.
It is the latter condition that distinguishes the viscous stress between volatile and nonvolatile
flowfields. Figure 58 compares the surface distributions of Vinn;j (= -Visis; ;) for pure thermocapillary
(Ma = 103) and pure interfacial flow (Rs = 10-1). In the case of thermocapillary flow, the Vinjn;;
profiles for superheating and subcooling are opposite in sign because of the different directions of
flow. With subcooling, the distribution is flat in the middle of the meniscus, but exhibits a sharp jump
and change in sign near the side wall. The magnitude of this jump is more pronounced at higher Bi
because of the larger stress gradient and surface velocity. In addition, the convection of the surface
temperature gradient and stress toward the side walls causes the magnitude of this peak to
approximate the variation in the center. The change in sign near the corners occurs at the point
where o = 45° and s;; = 0. For x’ above this point, s;; < 0, and for values below it, s;; > 0. The
crossover location is the same for all the cases in figure 58, since the surfaces share the same
circular geometry.

The variation of V;njn;; for superheated thermocapillary flow is more pronounced than
subcooling. This case also reflects a very different relationship between stress in the middle and
corner regions of the surface. The magnitude is higher in the center due to the convection of surface
liquid into the interior and concentration of the temperature gradient around the center-line.
Consequently, IVinjn;jl is noticeably larger than the value at the side wall. Although different, the
magnitudes in both of these regions are much greater than subcooling because of the higher
circulation. With increased Bi, there is an appreciable increase in stress because of the more
pronounced temperature gradient around the center-line. At the upper limit of Bi, however, the
gradient in the center flattens and the magnitude of Vin;n;; drops off slightly.
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Figure 58. Vinmjn;; versus x;.
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As expected, the influence of V;n;n; ; for pure interfacial flow is negligible, since the tangential
velocity for these cases'is extremely small. Except for the small contribution due to the side wall
bias of W near the upper corners, the surface velocity is defined primarily by its normal component.
Because of the vanishing tangential component, the contribution of curvature to viscous stress can
be ignored.

The first-order influence of viscous stress on deformation is analyzed using the same
approach from before. The simplified equation for curvature in this case is:

Kk =2-2Ca(SvAT-AV;s;s (135)

i)
where temperature and velocity are referenced with respect to center-line values according to AT =
T—To and AV,‘ = V,'-Vo,'.

The surface response is first examined using the basic state temperature distributions as a
reference. Since there is no internal convection associated with this regime, only the influence of SvT
can be examined. Figure 59 shows the half-cavity surfaces with subcooled and superheated
boundaries for Ma =0, Rs = o0, and Bi = 1, 10 and 102. The sensitivity is characterized in terms of the
product CaSv. Unlike recoil, the flux term can assume either a negative or positive deviation from the
static isothermal surface, depending on the temperature gradient relative to the center-line.

With subcooling, the higher mass flux near the side walls exerts a force into the liquid that
depresses the surface. At low Bi, the deformation is comparatively small since the temperature
gradient is low. The surface morphology is most sensitive at Bi = 10, since this represents the case
of maximum gradient. The deviation drops off at higher Bi because of the shift in temperature
gradient towards the side walls. The surface response to the viscous stress flux term is much more
sensitive with superheating, as shown by the smaller values of CaSv in figure 59. The difference
between subcooling and superheating depends less on convection and more on the numerical
robustness associated with terms that add to the curvature in equation (110). With subcooling the
flux term is additive, and a large negative curvature at the center-line can be employed to
accommodate a large variation in contour angle beyond the inflection point. For instance, with @ =
15°, a total angle change of 165° beyond the inflection at the multivalued limit is possible. With
superheating, which is subtractive, the angular change is only 15°,

The flux component for superheating yields a less tractable and more unstable surface than
subcooling. On a physical scale, however, the magnitude of this effect is small compared to that of
pressure and recoil. For instance at the worst case of Bi = 10, an Rs of 10-! and moderate Ca value of
10-3 yield CaSv = 10-1, The deformation for thlS case is negligible for both condensation and
evaporation.

Figure 60 illustrates the influence of viscous stress using the temperature and velocity
distributions for pure interfacial flow, where Rs = 10-1. It was noted earlier that because of the
negligible tangential velocity, the influence of the curvature component is nonexistent. In addition,
the response shown in figure 60 is more relevant than figure 59, from a physical standpoint, since it
includes the effects of convection on the temperature field. Here, Sv is fixed at the value appropriate
for each case, that is Sv = Bi/Rs, and vary Ca. It is evident that the surface is relatively insensitive to
Ca, and that the deformation is highest at Bi = 102, Because of isotherm compression, the gradient
with superheating is less thus restricting the influence at Bi = 10. It was also noted that the
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magnitude of deviation is about the same for subcooling and superheating because condensation

tends to increase the temperature gradient.
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Figure 59. Viscous stress sensitivity (basic state temperature).
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The response to pure thermocapillary flow is quite different. This case, which is based on the
steady-state solution for Ma = 103, is shown in figure 61. As noted before, the high interfacial
resistance effectively removes the flux term from consideration. Thus, the surface is dictated
primarily by the change in curvature and V;n;n; ;. Figure 61 indicates that the deformation response is
opposite to that for pure interfacial flow and is more sensitive to changes in Ca. In addition, the
deflection increases with higher Bi due to the larger velocities along the surface.
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Figure 61. Viscous stress sensitivity (Ma = 103 and Rs = 103).
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F. Summary

In this section, the different terms in the equation for surface curvature were examined and
their first-order effect on surface morphology was evaluated. Results showed that the influence of
thermally induced surface tension variation and viscous stress is practically negligible. y-induced
deformation is significant for values of Cr close to unity. This limit, however, is much greater than the
bounds identified in section V, and for Cr < 0.5, the surface tension term in equation (45) has hardly
any influence on surface morphology. The deformation associated with viscous stress is also
relatively small. In addition, it appears that the flux and curvature components of this term exhibit
opposite behavior and tend to counteract each other in the case of combined convection.

The two most important terms are vapor recoil and dynamic pressure. In general, the
influence of recoil is independent of heating mode. It is always manifested in the —x;-direction and
increases towards the side walls. This tends to reduce center-line curvature, while raising x near
the contact line. At high Vr, the center-line curvature can become negative, and, if Vr is large enough,
lead to a multivalued surface relative to x;. It was also found that subcooled thermocapillary flow
suppresses deformation, while superheating promotes it. These differences, however, vanish as
Bi — oo, Condensation and evaporation exhibit opposite behavior. Condensation tends to increase
deformation by raising the surface temperature gradient, while evaporation suppresses it. Unlike
yv-induced deformation, one expects recoil to exert an appreciable influence on surface geometry,
since Vr as high as 10 to 102 are feasible for Ca ranging from 104 to 10-3.

The influence of dynamic pressure on surface geometry is quite different for subcooling and
superheating. In addition, the large pressure gradients encountered with low contact angles makes
the surface extremely sensitive to flow-induced pressure variations and Ca. It is likely that with the
pressure distributions obtained in the steady-state analysis, the surface could exhibit multivalued
behavior even at low to moderate values of Ca. This is especially true for subcooling which is most
sensitive to this effect. Thus, dynamic pressure represents the most likely source of mechanical non-
equilibrium.

With superheating, dynamic pressure and vapor recoil act in the same direction. Recoil tends
to depress the surface near the side wall, and dynamic pressure does the same by producing a
suction in this region relative to the center-line. Both terms make a positive contribution to
curvature, and relatively large values of Ca can be accommodated before the surface becomes
multivalued. With subcooling, however, the recoil and pressure exhibit opposing effects. Recoil acts
in the same direction as before, and depresses the surface near the side walls. Dynamic pressure,
however, causes a suction and drawing down of the surface around the center-line. This represents a
negative contribution to curvature and greatly reduces the range of Ca that can be accommodated
before the multivalued limit is reached.

VIII. PORE FLOWFIELD—DEFORMABLE SURFACE
A. Introduction

The assumption of a frozen or fixed meniscus is oftentimes inappropriate when considering
two-phase thermocapillary phenomena in very small pores and cavities. This is especially true for
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highly wetting fluids with low contact angles. Results from the first-order analysis in section VII
showed that surface morphology is most sensitive to the flow-induced deviation from hydrostatic
pressure P, and the recoil force caused by interfacial mass transfer. It was also found that, within
the parameter ranges identified in section V, the surface can acquire an inflection and change in the
sign of curvature. Even with a moderate value of Ca (= 10-3), the inflection can become pronounced
enough to form a multivalued surface between the center-line and sidewall.

In this section, the steady-state problem in section VI is reexamined while accounting for a
deformable meniscus. The objective in doing this is twofold. From an applications standpoint, the
interest is in determining whether the convection and deformation caused by changes in pressurant
conditions could lead to retention loss in the pores of liquid acquisition device screens. The flexibility
of modeling superheated and subcooled boundaries with different values of interfacial resistance
allows us to address the cause of retention loss with heated hydrogen vapor and explain the
differences in performance exhibited by helium and hydrogen.

On a general level, the simultaneous influence of dynamic pressure and vapor recoil on
surface geometry is investigated, and the extent to which deformation alters the streamfunction,
pressure and temperature distributions obtained in section VI is determined. Stability as it is applied
in the study of thin films and capillary jets is not addressed. Rather, the surface’s ability to maintain
mechanical equilibrium is evaluated by determining whether solutions exist that simultaneously
satisfy the equations of fluid motion, temperature and surface geometry. Identification of possible
metastable states represented by the surface inflections noted in section VII is also of interest.
Although these states may be solvable numerically, their liquid geometries are likely prone to slight
perturbations in pressure or temperature and indicative of the onset of retention loss.

B. General Effects of Dynamic Pressure and Recoil

Within the context of the one-sided model, the only parameters that directly reflect a change
in vapor/liquid equilibrium are Rs and Bi, where Vr < Rs2, All others, except contact angle, are fixed
at values approximately representative of a 1 pum to 10 um liquid hydrogen pore subjected to
superheat/subcooling levels of 10-! K to 1 K, namely Ma = 102, Cr = 10-1 and Ca = 10-3. Instead of
considering a zero or very small contact angle, which would properly model hydrogen characteristics,
one sets @ = 45°. With subcooling, it was very difficult to obtain solutions at @ = 15°, let alone ~0°,
due to the extremely large interline pressure gradients. By employing a higher @, the pressure
gradient is reduced, and the surface is less sensitive to variations in P4. The advantage of this is
that it yields a clearer picture of the deformation associated with dynamic pressure.

First the influence of interfacial equilibrium is examined while holding heat transfer
characteristics and all other dimensionless groupings constant. Rs and Vr are varied to model
different levels of vapor/liquid equilibrium along the surface, but the sensitivity of latent heat
transport to mass transfer is ignored by assuming a constant Bi (= 10). These conditions were
examined before in the contact angle investigations of figures 37 and 38. Although the cases
illustrated in these figures were solved assuming a constant meniscus, they will nonetheless provide
a good reference for examination of deformation. First the focus is restricted to thermocapillary
effects by considering the nonvolatile case in which Rs = 103. After that, progressively lower values
of Rs (and higher Vr) are examined to determine how extensively recoil either augments or offsets
the influence of dynamic pressure.
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For the nonvolatile case, one sees from equation (48) that the extremely low value of recoil
parameter (i.e., Vr = 10-6 with f, = 10%) suggests that the surface is dictated by dynamic pressure
and unaffected by recoil. The steady-state solutions for this case are shown in figure 62.
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Figure 62. Ma =102, Rs =103, Bi = 10, and Cr = 10-1.

To better illustrate deformation, the static isothermal solution (SIS) for the @ = 45° surface in
figure 37 is superimposed on the plots in figure 62. One sees that the behaviors of the two heating
modes are quite different. With subcooling, the surface consistently diverges to a multivalued shape,
and one is unable to obtain convergence between the flowfield and surface solutions. The plot in
figure 62 actually represents the steady-state solution after the 16th surface iteration. With
subsequent iterations, the depression near the center-line grows until the surface becomes
multivalued at x; = 0.1 and 0.9. An attempt was made to run the case with a finer 34 by 25 element
grid, but the same instability was encountered. Initially, the surface appears to converge in the test
following each steady-state solution. However, after ~16 iterations, it begins to diverge.

The shift from convergent to divergent behavior indicates that interfacial pressure is strongly
influenced by the contour and growing depression in the middle of the cavity. During the first few
iterations, the meniscus assumes an inflection to accommodate the negative contribution of Py to the
contour angle integration. The flat surface around this inflection extends the high pressure region
near the interline into the center and drives the depression even lower. Another contributing effect is
the increase in circulation intensity with each iteration pass. Figure 62 shows that the circulation for
the deforming case is greater than its fixed counterpart in figure 37. The depressed surface around
the center-line serves to increase the x,-component of the thermocapillary stress force Bi®;, and
promotes circulation. Consequently, the deformation associated with subcooling has the same
stress-related effect on the interline pressure gradient as reducing contact angle.

With superheating, convergence to a stable steady-state solution occurs in only eight surface
iterations. As it approaches this state, the meniscus flattens and decreases in area due to the
pressure drop towards the wall. Although the deformed flowfield is very similar to the case in figure
37, one notable difference is the slightly reduced half-cavity circulation. The deformation here models
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the effect of increasing contact angle and reducing Bi®;. This lessens the interline pressure gradient
and ensures stable numerical convergence. As long as the surface retains a positive curvature,
superheated thermocapillary flow should promote mechanical equilibrium along the interface.

Next, the effect of reducing Rs to 1 is examined while holding Bi and Ma constant at 10 and
102, respectively. This change not only increases the influence of interfacial flow on the flowfield, but
it also yields a substantially larger recoil parameter value of Vr = 1. One sees in figure 63 that, apart
from the change in position of the surface, the temperature fields do not vary much from the
distributions in figure 37. As before, it is impossible to obtain a steady-state solution for subcooling.
The flowfield shown here corresponds to the 16th surface iteration. However, the number of
iterations required to reach the multivalued condition is greater than the case in figure 62. This
suggests that recoil does provide an offsetting effect and suppresses the instability associated with
dynamic pressure. With superheating, reducing the interfacial resistance causes a slight rise in the
surface relative to the case in figure 62. Since pressure and recoil both provide positive contributions
to curvature, the deformed surface exhibits the same stabilizing effect on pressure gradient.
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Figure 63. Ma =102, Rs =1, Bi=10,and Cr=10"1.

It appears that vapor recoil can reduce or possibly eliminate the mechanical nonequilibrium
arising from subcooled thermocapillary flow. This is verified in figure 64 which shows the solutions
corresponding to Rs = 10-1/2 = 0.3162 and Vr = 10. The subcooled case is completely stable and
slightly raised with respect to the SIS curve. The order of magnitude increase in Vr is sufficient to
offset the influence of dynamic pressure. With superheating, one encounters the same flattening of
the meniscus as before. Because of the increased recoil, the change from the static isothermal state
is much greater. Deformation also influences interfacial heat and mass transfer. In the nondeforming
cases in figure 38, the superheated regimes had generally larger circulations and throughputs than
their subcooled counterparts. When deformation is considered, however, the throughput and
circulation intensity for subcooling is greater. The increase in throughput is attributed to the larger
exposed surface area for subcooled flow, while the difference in circulation is due to the flatter
surfaces and lower Bi©;, associated with superheating.
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Subcooling Superheating

Figure 64. Ma =102, Rs = 10-12, Bi = 10, and Cr = 10-1,

All of the subcooled cases considered so far have included the presence of thermocapillary
flow and its destablllzmg effect on surface morphology. In flgure 65, one neglects this form of
convection and examines the case of pure interfacial flow. By ignoring surface stress (Ma = 0), one
removes the strong interline pressure gradient arising from thermocapillarity and directly assesses
the influence of interfacial temperature on deformation. Comparison of the plots in figure 65 indicates
that the difference in surface geometry for the two heating modes is relatively small. The slight
difference reflects the manner in which interfacial convection either increases or decreases thermal
potential. With subcooling, condensation of warm vapor tends to reduce Il and recoil by lowering the
temperature difference between the liquid and vapor. With evaporation, however, convection from the
bottom of the cavity increases the liquid/vapor temperature difference and recoil force. This stronger
recoil force, in turn, leads to a more pronounced flattening of the meniscus.

The results, so far, have coincided closely with the first-order behavior investigated in
section VIL. One aspect that has not been addressed is the effect of surface inflections on stability.
One is interested in determining whether steady-state solutions exist for situations involving a
change in the sign of surface curvature.
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Figure 65. Ma =0, Rs=10-12, Bi= 10, Cr = 10-1, and Ca = 10-3.
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The pressure and recoil-related deformation resulting from superheating causes an upward-
pointing bulge in the middle of the meniscus. Since the surface in figure 64 is nearly perfectly flat, it is
probable that a further reduction in Rs should yield an inflection and negative curvature at the center-
line. This was tested by reducing Rs from 10-1/2 to 20-1/2 and doubling Vr from 10 to 20. The resulting
steady-state flowfield is shown in figure 66.

Figure 66. Superheating—Ma = 102, Rs = 20-1/2, Bi = 10, and Cr = 1071,

Apparently, a stable solution can be obtained with a substantial negative curvature at the
center-line. A unique aspect of the iteration procedure is that once the inflection is reached, recoil-
related deformation serves to increase the exposed surface area, while at higher Rs, it tends to
reduce it. The larger area causes an increase in flowrate, surface potential, and temperature, all of
which contribute to a larger recoil force. Such a situation could be unstable if the area-increasing
effect of recoil and temperature-raising influence of convection reinforces each other. As it turns out,
the average temperature, which is more indicative of temperature distribution for a variable surface,
actually decreases once the surface passes the inflection point. If recoil exhibits a greater
dependency on this parameter, then such a situation would promote stability up to and beyond the
multivalued limit.

Although convergence was achieved in the case shown in figure 66, the stability of inflections
with negative curvatures is still questionable and deserves further investigation. With subcooling,
one failed to obtain a stable, pressure-dominated surface with any clearly evident inflection. The
closest that this report came to this condition was at Rs = 5-1/2, where a surface that projected
slightly below the SIS contour was obtained. As figure 67 shows, it is not apparent whether this
surface contains an inflection. For all values of Rs > 5-1/2, the iteration converged until the surface
reached an inflection, but because no convergence was established, the iteration diverged beyond
this point to the multivalued limit.

It appears that the interfacial pressure arising from thermocapillarity has a destabilizing effect
on a subcooled surface. The recoil mechanism, however, tends to counteract this effect and foster
mechanical equilibrium. It is probable that pressure-induced deformation is the chief cause for
retention loss in LAD screens with liquid hydrogen. In these devices, pressurization with a warm
vapor subcools the liquid, and through thermocapillary stress, establishes a suction that pulls the
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meniscus down in the middle of the pore. Although such conditions also promote the offsetting effect
of condensation-induced recoil, the Rs values corresponding to the pore size range of interest are too
low to produce a force large enough to counteract the destabilizing influence of dynamic pressure.
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Figure 67. Subcooling—Ma = 102, Rs = 5-12, Bi = 10, and Cr = 10-1.

The results also explain the difference observed between screens subjected to heated
pressurant and those heated directly by conduction. Heating through solid contact with the liquid
models the situation of a superheated pore. One would expect the establishment of a center-directed
thermocapillary flow pattern at the surface and a suction in the vicinity of the sidewalls. Unlike
subcooling, this would promote stability and result in a more robust meniscus.

C. Reduction in Accommodation Coefficient

In the previous section, the effect of changing vapor/liquid equilibrium while holding Bi
constant was examined. From the standpoint of liquid acquisition devices, this approach was
adequate for identifying causes for retention loss in situations involving pressurization with a heated
vapor. However, it is insufficient for explaining why this failure mode does not arise when the device
is pressurized with an inert gas, such as helium. To examine the influence of an inert pressurant, one
must account for the relationship between Bi and the level of equilibrium between the vapor and
liquid (i.e., Rs). As discussed in sections III and VI, maintaining a constant Bi is equivalent to
varying the evaporation number according to E o Rs-1. This is physically unrealistic since E is
independent of vapor/liquid equilibrium, and depends solely on liquid properties and the imposed
temperature difference.

The degree of vapor/liquid equilibrium is embodied in the accommodation coefficient e in
equation (27), which represents the resistance to interfacial mass transport. Its value ranges from 0
to 1, and is lowered by the presence of foreign molecules in either the condensed or vapor phase. It
has previously been assumed that e = 1, which is appropriate for modeling kinetics of a pure liquid in
contact with its own saturated vapor. According to gas kinetic theory, an inert gas should suppress
interaction between the liquid and vapor, and from the standpoint of the one-sided model, decrease
the effective accommodation coefficient. One can see from equation (41) that a reduction in e is
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primarily manifested as an increase in Rs and interfacial nonequilibrium. It is also apparent from
equations (57) and (48) that a lower ¢ will yield a more convection-limited temperature distribution
(i.e., lower Bi) and a decreased recoil force (i.e., lower Vr and ©,). For this study, the presence of an
inert gas can be modeled by increasing Rs and lowering the value of Bi according to equation (57),
while holding E constant.

The reduction in Bi reflects a decrease in latent heat transport between the liquid and vapor,
which tends to lower the interfacial temperature gradient and thermocapillary stress along the
surface. The consequence of this for subcooling is twofold. The lowering of Vr will decrease the
offsetting and stabilizing effect of recoil. However, the corresponding decrease in thermocapillary
stress will reduce circulation and the magnitude of the interline pressure gradient. The net result
should be a reduction in pressure-induced deformation.

The influence of an inert gas and reduction in accommodation coefficient is assessed by
comparing figures 63, 68, and 69. In this series of cases, E is held at 10-! while Rs is raised
incrementally from 1 to 2 to 10. The corresponding Biot number change is from 10 to 5 to 1. As noted
before, the subcooling regime in figure 63 is unsolvable due to the destabilizing effect of dynamic
pressure, while the superheating regime is stable.
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Figure 68. Ma =102, Rs=2,Bi=5,and Cr=10-1.
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Figure 69. Ma =102, Rs =10, Bi= 1, and Cr=10-1.
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At the next increment of Rs (= 2), a stable solution for the subcooling regime is obtained. As
shown in figure 68, the steady-state flowfield solution exhibits a slight depression around the
center-line. Although no inflection is clearly apparent, the surface does become relatively flat near
the sidewalls. One also sees that the surface temperature gradient is lower than the case in figure
63, and causes a drop in circulation intensity and thermocapillary convection. With superheating, one
notes the same general thermal behavior. Here, however, the increase in Rs and reduction in interline
pressure gradient decreases the effect of recoil and dynamic pressure causing the surface to drop
closer to the SIS curve.

With Rs = 10 (fig. 69), a dramatic drop in circulation intensity is noted for both heating modes.
Considerable reduction in viscous losses at the sidewall eliminates the main factor causing the
difference in circulation intensity between subcooling and superheating. Most importantly, the
surface in both cases converges to a shape which is very close to the static isothermal geometry.

Reduction in accommodation coefficient appears to restrict both the intensity of circulation in
the pore and the deformation associated with pressure and recoil-induced stress. This is especially
true for subcooled thermocapillary flow, which, based on a simple decrease in e, can transition from
an unstable solution to one that is completely well behaved. Although this phenomenon was only
sketchily studied, it appears to provide a plausible explanation for the resistance to retention failure
exhibited in LAD tests with gaseous helium. Regardless of whether the gas presents a subcooled or
superheated environment, the transition into a more convection-limited interfacial temperature
distribution suppresses the pressure gradients associated with thermocapillary flow.

D. Summary

In this section, the steady-state solution of pores with a deformable surface was briefly
examined. Using parameter values approximately representative of liquid hydrogen exposed to its
own vapor, the response of the surface to several heating modes was evaluated, including
pressurization with heated vapor, screen (solid boundary) conduction, and pressurization with inert
gas. This was achieved by varying the level of vapor/liquid equilibrium for both superheating and
subcooling cases.

It was found that the surface was relatively immune to superheating. Pressure and recoil
forces both act in the same direction and depress the meniscus near the sidewalls, thus duplicating
the effect of large contact angles. This reduces the circulation associated with thermocapillarity,
suppresses pressure variation along the surface, and tends to stabilize the surface. With subcooling,
however, the surface was particularly sensitive to thermocapillarity and pressure-induced stress
effects which cause a suction and drawing down of the meniscus in the middle of the cavity. In fact,
one was unable to obtain a steady-state solution for the case of hydrogen exposed to its own vapor.

The response to an inert gas was evaluated by reducing the accommodation coefficient, which
increases Rs and decreases Bi. The less severe temperature gradient restricts circulation and
interfacial pressure gradient, and suppresses the mechanical nonequilibrium associated with
subcooled thermocapillary flow.
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IX. DISCUSSION & CONCLUSIONS

A. Introduction

The objective of this study was to determine if the convection arising from thermodynamic
nonequilibrium along the porous surface of LAD’s could lead to the retention loss observed in
previous experiments with hydrogen liquid and vapor. The study also attempted to explain why
these devices seemed immune or only slightly prone to retention failure with either direct heating of
the screen surface or pressurization with heated helium gas. A ma]or accomphshment was the
definition of a physical model that approximates the conditions in previous hydrogen retention
experiments. This provided a basis for evaluating appropriate heating and convection modes, and
examining first-order and coupled behavior of the free surface. The results provided a plausible
explanation for both the susceptibility and resistance to retention loss under different non-
equilibrium conditions. In obtaining these results, there were several intermediate findings that
supported the final conclusions and provided insight into this relatively new and unique problem.
Many of these are relevant to systems that involve liquid/vapor phase change in microgravity or
along a porous surface.

B. Discussion, Liquid Retention

Pressurization of a cryogenic vessel or direct unpressurized heating of a screen yields several
possible nonequilibrium states between the vapor and liquid. Pressurization of an LAD containing
liquid hydrogen with heated vapor represents a (1) subcooling of the liquid in the presence of a
saturated (or superheated) vapor. Direct contact heating of the screen, however, models (2)
superheating of the liquid in the presence of a saturated vapor. Introduction of an inert gas in a
hydrogen pressurization system represents a (3) subcooling of the liquid in the presence of an inert
gas. Finally, pressurization with helium has the same effect as (4) superheating the liquid in the
presence of an inert gas.

1. Subcooling with Saturated Vapor (Case 1). Previous tests showed that case 1 was most

prone to retention failure. That observation is supported by the results of this study which point to
thermocapillary flow arising from condensation as the cause for retention loss. When the liquid is
subcooled, condensation of warm vapor raises surface temperature and establishes a negative
temperature gradient towards the sides of the pore. This gradient yields a thermocapillary stress
that drives flow at the surface towards the wires (i.e., side walls). With a highly wetting fluid, such
as hydrogen, this flow pattern produces a large positive pressure gradient in the wire vicinity. If the
meniscus is at a position corresponding to the nominal bubble point, this pressure distribution is
manifested as a suction in the middle of the surface. Because of the small pore dimensions and
Capillary numbers (Ca ~ 10-3), the surface is highly sensitive to this suction and deforms into the
liquid.

The geometrical limitations imposed by use of quadrilateral finite elements prevented
considering a zero contact angle. Even if one could have accurately modeled such a situation, a zero
contact angle would have been difficult to accommodate with a growing depression in the center of
the pore. This is because the surface on either side of the center-line would have to assume a double
inflection to maintain the bubble point position and satisfy the zero contact angle constraint. If the
meniscus was at the nominal bubble point prior to pressurization, then, at the onset of subcooling,
thermocapillary-induced circulation would cause it to detach and move into the liquid.
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Although a more conservative 45° contact angle was used in the investigation, the same
destabilizing effect was observed with subcooling. Here, the growing depression increases the
thermocapillary stress force and half-cavity circulation, which drives the pressure gradient even
higher. As discussed in section VIII, an increasing curvature at the center-line has the same effect
as decreasing contact angle, and strengthens the thermocapillary force in the xp-direction. This is
physically unstable, since the surface calculated after each steady-state solution serves to increase
the deformation-producing effect of dynamic pressure. The author was unable to model complete
expansion of the surface into the liquid because of the limited numerical representation of interfacial
temperature and pressure. However, the point of retention loss probably occurs when the surface
becomes multivalued with respect to xj. After this point, continued deformation with a constant back

pressure reduces curvature and resistance to further expansion into the liquid.

Although retention loss is attributed to condensation, the recoil mechanism has little effect on
this phenomenon. Because of hydrogen's low ratio between liquid and vapor density (i.e., fp = 50),
the recoil parameter is too low to provide significant contributions to curvature. If it was larger, recoil
could offset pressure-induced deformation and improve retention performance.

2. Superheating with Saturated Vapor (Case 2). The evaporation caused by superheating

liquid in the presence of pure vapor yields a positive temperature gradient in the direction of the
wires and a flowfield structure opposite to that in case 1. Thermocapillary flow along the surface
establishes a negative pressure gradient towards the side wall, which reduces curvature in the
middle of the cavity. Because of the small recoil contribution, this deflection is primarily attributed to
the pressure increase. The reduction in curvature duplicates the same effect as increasing contact
angle and lowers the thermocapillary stress force. Since this tends to reduce the pressure gradient,
the situation is inherently stable and exhibits no sign of retention loss.

The conclusion that superheating promotes mechanical equilibrium only applies to the surface
and is valid as long as flow through the bottom of the cavity replenishes evaporative losses. In
instances where wicking is unable to accommodate this rate, the surface will be susceptible to
dryout and loss of retention.

3. Subcooling with Inert Gas (Case 3). The situation of subcooling in the presence of an inert
gas occurs when a tank partially filled with gaseous helium is pressurized with warm hydrogen
vapor. As in case 1, condensation takes place but at a rate substantially less due to the increase in
nonequilibrium along the surface. The presence of helium is manifested by a reduction in the
accommodation coefficient e. The most significant aspect of this reduction is a decrease in Biot
number and temperature gradient along the surface. The associated lowering of thermocapillary
stress and circulation results in a lower pressure gradient than case 1 and decrease in deformation.
The presence of helium, therefore, promotes stability and improves retention performance.

4. Superheating with Inert Gas (Case 4). Case 4 models a similar situation in which the tank
is pressurized entirely with heated helium. Here, however, the partial pressure of hydrogen in the
gas is less than the vapor pressure of the liquid and one expects evaporation along the surface. The
effect on accommodation coefficient, however, is very similar to case 3, and causes a lower Biot
number and higher interfacial resistance than its evaporation counterpart in case 2. Provided that
losses at the surface are adequately replenished (i.e., no screen dryout), this situation is also
inherently stable.
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C. Discussion, Summary of Heating and Flow Regimes

Before addressing the problem of retention loss in sections VII and VIII, several different
heating and flow regimes were examined to improve understanding of the relationship between
interfacial equilibrium, contact angle and flowfield behavior.

1. Basic State. Analysis of the basic state provided insight into how contact angle, surface
curvature and Biot number Bi influence interfacial temperature. Thermal characteristics of a static
wetting fluid in microgravity depend on Bi and contact angle w—the latter of which dictates the
surface orientation with respect to the temperature gradient. Although convection is ignored in the
basic state, the author was able to characterize the fundamental influence of Bi and @ on heat
transfer, mass transfer and stress by using the thermal potential I, modified stress 6; and Re-
normalized thermocapillary stress force Bi©®;. These parameters were derived by factoring out the
linear effects of Re (or Ma) and Bi, and restricting our focus to the nonlinear influence of @ and Bi.

Applying the definition of 6;, it was found that low-contact angle surfaces exhibit lower
surface temperature gradients and stress distributions than flatter ones. Because the surface is
closer and more parallel to the side wall in the contact region, the change in temperature with respect
to the surface contour is less.

Integration of the modified stress distribution provided an indication of the total stress force
acting in each direction @;. The product of Bi and ©; reflected the sensitivity of surface traction to Bi
and @. With a wetting surface, it was found that a net thermocapillary force arises in the +x2-
direction with subcooling and —x;-direction with superheating. No net force occurs in the xj-direction
due to the mirror-symmetry of 6; about the center-line. Because of the steeper surface orientation
near the contact line, the magnitude of the thermocapillary force is greater for smaller contact angles.

Applying the definition of thermal potential II, it was found that heat and mass transfer
should increase at higher Bi and lower w. Although the nonlinear effects of Bi tend to decrease II by
reducing interfacial temperature, the linear influence of Bi offsets this and increases interfacial
transport. Also, the lowering of contact angle tends to raise IT due to the increase in exposed area
near the side wall and along the meniscus in general.

2. Pure Evaporation and Condensation. Evaporation occurs when the boundaries are

superheated with respect to the vapor, while condensation arises when they are subcooled.
Evaporation establishes a vertically oriented flowfield in the +x2-direction which produces
counterclockwise and clockwise circulation in the left and right half-cavities, respectively.
Condensation produces a similar flow structure that is opposite in direction and sign. In both cases,
there is a small contribution of surface velocity to circulation (i.e., side wall bias) due to the
concentration of mass flux at the side walls.

Depending on the level of vapor/liquid equilibrium, this vertically oriented flowfield can
strongly influence the interfacial temperature distribution via convection and complicate the
calculation of heat and mass transfer through the cavity. Evaporation convects superheated liquid to
the surface which tends to raise surface temperature. Condensation causes the accumulation of
warm liquid on the surface which also increases surface temperature. The temperature increase
associated with evaporation, however, serves to raise thermal potential and interfacial transport,
while with condensation, the potential is lowered, thus suppressing heat and mass transfer. The
deviation in thermal potential from the basic state is maximized when 1 < Bi < 10.
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Evaporation and. condensation also exhibit different effects on the surface temperature
gradient. The increase in surface temperature that accompanies condensation serves to raise the
average gradient and extend the variation over a larger portion of the cavity. With evaporation,
however, the elevated surface temperature decreases the gradient and shifts most of the
temperature change to the side walls. Although the shift in gradient caused by convection has little
influence on pure evaporation or condensation, it does affect thermocapillary stress with combined-
mode convection.

At the same levels of surface equilibrium and superheat/subcooling, the magnitude of half-
cavity circulation for evaporation is typically greater than that for condensation. This is because for
Bi < 102, the primary contribution to circulation comes from the velocity along the center-line. The
center-line velocities are greater for evaporation because of its reinforcing effect on thermal potential
and mass transfer.

3. Pure Thermocapillary Flow. Thermocapillary-induced stress establishes two counter-
rotating cells symmetric about the cavity center-line. With superheating, the circulation in the left
half-cavity is clockwise, and warm liquid at the surface is convected from the side walls to the
center-line. With subcooling the circulation is reversed, and surface fluid flows towards the side
walls. Surface velocity and circulation strength depend on Ma and the variation of temperature
gradient along the meniscus, which is primarily dictated by Bi. Note that the thermocapillary and
interfacial circulations concomitant with either superheating or subcooling are opposite in sign.

The surface convection associated with superheating tends to increase interfacial
temperature and thermal potential. Fluid in the upper portion of the cell enters the surface region
near the maximum cavity temperature and flows to a cooler region. Hence, the temperature is
minimum in the center of the cavity. With subcooling, the situation is more complex. Competing with
the accumulation of warm liquid at the meniscus center is the return flow of cool liquid from the
bottom of the cavity. This upwelling suppresses the temperature rise in the center-line region, and
causes the temperature profile to exhibit a maximum between the center-line and side wall. It also
offsets the convection of warm liquid towards the side walls and yields a more modest increase in
thermal potential compared to superheating.

The half-cavity circulation for superheating is consistently greater than that for subcooling. At
low Ma, the difference between the two is maximized at Bi ~10, but disappears as Bi — 0 or Bi >
oo, At high Ma, the effect of convection on the superheated temperature field is more extensive and
forms a high gradient region around the center-line. There is consequently a significant difference
between these two modes over the entire range of Bi.

Thermocapillary flow yields substantial pressure gradients near the side walls. With
superheating, the gradient is negative because the flow towards the center-line produces a suction
in the contact region. With subcooling, the flow towards the side wall produces a suction at the
center-line and a pressure rise at the corners. At low Ma, the pressure rise for subcooling is larger,
since the differences in circulation are rather small, and the magnitude of thermocapillary stress for
subcooling is greater at the corners. At higher Ma, the substantially higher circulation for
superheating yields a larger change in pressure along the surface.

The circulation and pressure variation associated with thermocapillary flow strongly depend

on contact angle. With large contact angles (@ — 90°), the circulation in each half-cavity is
suppressed by opposing flow from the other side. At lower contact angles, the circulation for both
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heating modes is more intense. It was also found that the circulation intensity is directly related to
the xz-component of the net thermocapillary stress force exerted on the surface. The strong
dependence of circulation on contact angle also applies to the behavior of dynamic pressure. At high
angles, the pressure distribution is somewhat constant, which reflects the reduced constriction on
flow area at the interline. At low angles, however, the pressure gradient at the side walls is
substantially greater.

4. Combined-Mode Convection. In general, the behavior of pure thermocapillary and

interfacial flow still applies in the combined situation, even when one mode clearly dominates over
the other. There are, however, several unique features of this type of regime. For one, the
circulations associated with thermocapillary and interfacial flow oppose each other. Thus, when both
modes are present, the total half-cavity circulation C is a good indicator of which mode governs the
convection pattern and temperature distribution. Although the circulations are opposite in sign, their
simultaneous presence may actually reinforce the effects of both modes. For instance, with
subcooling in the transition region (C = 0) thermocapillarity tends to augment the suppression of
thermal potential caused by condensation. By distending the warm temperature region towards the
side wall, the thermal potential decreases to a value lower than that for pure condensation.

The pressure gradient for combined flow is also greater than either its pure thermocapillary or
interfacial flow counterpart. This is because combined flow reflects a superposition of the pressure
distributions for thermocapillary and interfacial flow.

5. Surface Response and Morphology. The thermal dependence of surface tension appears to

have little effect on surface curvature and steady-state morphology. The first-order analysis in
section VII showed that this term would be significant only if the Crispation number Cr were close to
1. This is physically unrealistic, since Cr is usually less than 10-1.

The surface is most sensitive to viscous stress in instances where there is strong
thermocapillary flow along a highly curved meniscus. The curvature term in the expression for
viscous stress appears to exhibit a much stronger sensitivity than the flux component, especially at
small contact angles. However, compared to the other terms in the normal stress balance, viscous
stress can be safely ignored for the problem considered here.

For the length and temperature scales considered in this problem, the two most important
terms in the normal stress equation are vapor recoil and dynamic pressure. The surface deformation
associated with recoil is the same for both superheating and subcooling and causes a flattening and,
under extreme conditions, a bulging in the center of the pore. It appears, however, that this
deformation is stable in that the response does not result in an increase in the temperature
distribution across the meniscus. In fact, its effect is analogous to increasing the contact angle.

The influence of dynamic pressure represents the only potential instability. With
superheating, this term has the same effect as recoil and tends to flatten the meniscus. It duplicates
the same effect as increasing contact angle and serves to reduce the magnitude of pressure gradient
at the side walls. The deformation in this case is stable. With subcooling, however, the deformation
is reversed and causes a depression about the center-line. This promotes circulation and tends to
increase the magnitude of the pressure gradient and the deformation even further. The effect of
pressure in this case is analogous to decreasing contact angle. It appears that pressure-induced
deformation primarily depends on the circulation caused by thermocapillary stress and becomes more
pronounced by increasing either Ma or Bi.
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D. Conclusions

The results of this study support the original hypothesis of retention loss being caused by
convection within the screen pores of liquid acquisition devices. The retention failures encountered in
previous experiments with liquid hydrogen and pressurized heated hydrogen vapor are caused by the
thermocapillary flow arising from condensation-induced temperature gradients along the liquid
surface of each pore. This flow establishes an interfacial pressure variation that deforms the center of
the surface into the liquid. The situation is physically unstable at zero to low contact angles, since
the deformation serves to increase the net thermocapillary stress force and pressure gradient even
further. The end result of the deformation is an expansion of the meniscus into the liquid and eventual
detachment from the screen wires.

The resistance to retention loss observed with heated helium pressurant is due to the change
in direction of heat and mass transfer at the surface. In this case, the surface evaporates and
establishes a thermocapillary flow structure that is opposite to the case of hydrogen pressurization.
Instead of depressing the meniscus, the pressure gradient tends to raise the surface in the center of
the pore. This situation is inherently stable because deformation in this direction serves to reduce
the thermocapillary stress force, circulation and interfacial pressure gradient. As long as the wicking
rate of the screen can accommodate evaporative losses, pressurization with heated helium promotes
mechanical equilibrium and mitigates retention loss.

The immunity to retention loss encountered with direct heating of screen samples is due to
the same behavior associated with helium pressurization. Since the vapor surrounding the screen is
not pressurized relative to the liquid, the pore menisci are superheated relative to the vapor. The
same thermocapillary flow pattern encountered with helium pressurization develops, and, provided
the wicking rate is adequate, the screen exhibits nominal or improved retention characteristics.

E. Recommendations

1. Liquid Acquisition Device Applications. From a spacecraft design standpoint, this study
has furthered understanding of a second retention failure mode for screened LAD’s. The first, which
has been recognized for years, is the dryout caused by evaporation and inadequate wicking through
the screen structure. This problem, however, is correctable with proper design of the liquid and
screen system. Most importantly, the failure is not attributable to a liquid surface effect, since, as
this study showed, evaporation tends to promote surface stability and does not detract from
meniscus retention behavior.

The failure mode investigated in this study is completely different than screen dryout. It is
caused by the presence of a physically unstable flow pattern in the pores of the screen and occurs
only when heated vapor is used as the pressurization source. This retention loss mechanism would
present problems only in cases of autogenous pressurization.

The results of this study suggest that an autogenous system is incompatible for use with
liquid hydrogen. Thus, the most straightforward recommendation is to discourage use of such a
system. This study has confirmed that the traditional approach of using an independent pressurant
source, such as helium, has little impact on retention performance. However, autogenous
pressurization is a recent concept that represents an advancement over helium pressurization, and is
appealing due to its potential reduction in weight and complexity.
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Based on the results of this study, it appears that loss of retention in an autogenous system
could be mitigated by either (1) reducing the accommodation coefficient and interfacial thermal
gradients in the pore menisci, (2) reducing the level of subcooling between the vapor pressurant and
liquid near the LAD surface, or (3) eliminating the pore liquid surface and thermocapillary convection
altogether during periods of pressurization.

There are several ways of reducing accommodation coefficient. One that is complementary
with some current pressurization schemes is to inject and mix a small amount of helium with the
hydrogen vapor. The presence of helium reduces the accommodation coefficient and increases non-
equilibrium at the surface. This suppresses condensation, reduces the interfacial temperature
gradient, and ultimately reduces thermocapillary flow and the flow-induced pressure gradient
responsible for retention loss.

Another method, which is appealing for start basket applications, is to employ helium only
during the initial phases of pressurization. Retention loss usually occurs prior to engine restart when
the outside screen surface is exposed to vapor. During this period, a small independent supply of
helium is used to ensure engine restart. Once the liquid reorients and fills the basket, the
autogenous supply is applied for the duration of the maneuver. The amount of helium required is
much less than a totally independent system. However, if the mass diffusion rate of helium in
hydrogen is much less than thermal diffusion in the tank, then this concept incurs the same retention
difficulties as an autogenous system.

Another alternative for reducing accommodation coefficient is to add a foreign substance to
the hydrogen liquid itself. Seeding of hydrogen has been considered before for other applications,
such as magnetic control. However, the issue always arises on how the substance will impact
propellant properties and rocket engine performance.

A second method for correcting retention failure is to offset subcooling by heating the pore
directly. This approach may be viable if the heat could be applied uniformly across the screen surface.
However, the complex geometry of the screen and inefficiencies associated with conduction along
such a tortuous path requires application of a relatively large heat load at only a few locations. Not
only would the level of heating and offset to subcooling vary considerably along the screen surface,
but in the vicinity of heat application, the liquid could become highly superheated and susceptible to
retention loss via evaporation and dryout.

The third method of mitigating retention loss is to devise a way of eliminating the porous
surface entirely. Recall that the problem arose from condensation-induced thermocapillary convection
on the liquid surfaces of individual pores. If, on the other hand, condensation occurred along not only
the liquid surfaces but also the screen wires, then this convection mode would be altered and the
adverse pressure gradients caused by flow in the contact region would be eliminated. Key to this
approach is the establishment of a liquid layer prior to development of a thermocapillary flowfield.
This concept holds promise since the subcooling could be provided relatively easily by the Joule-
Thompson effect in a thermodynamic vent system.

2. Future Research. In addition to recommendations pertaining to the design of LAD’s and

autogenous pressurization systems, several suggestions are offered for future research and
investigations in this area. Most of these are in response to issues raised in this study and include:
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a. The problem domain considered here was very simple and did not realistically portray the
situation near an LAD screen wire. Future investigations could concentrate on more complex
geometries, such as the type in figure 3, or even problems involving solution of a three-dimensional
flowfield. This would more accurately reflect the situation in a liquid acquisition device, heat pipe, or
other porous engineering systems.

b. The isothermal boundary conditions for the solid and internal interface did not reflect the
wider range of operating conditions encountered in actual applications. Future investigations could
examine the effect of using a Neumann-type heat flux condition at the side wall and possibly a liquid
in a saturated state coming from the interior. This would more properly model the situation of applied
heating at the interface.

c. The analysis of surface deformation and stability was rather limited in terms of
sophistication and breadth. The purpose here was merely to identify probable retention failure
mechanisms. Characterizing the nature and details of this behavior, particularly the destabilizing
effect of dynamic pressure, should be investigated using more sophisticated stability analyses.

d. Contact angle appears to play a major role in thermocapillary circulation and should be
examined more thoroughly.

F. Summary

In this section, the findings and results have been summarized in a manner that relates to
both LAD retention and two-phase microgravity fluid convection. The conclusions have been
presented which provide a plausible explanation for the disparity in liquid hydrogen retention
observed with different pressurant and heating conditions. To make the results more relevant from
an engineering standpoint, several recommendations have been offered for mitigating and eliminating
this form of retention loss in autogenous pressurization systems. Although all of these have
potential drawbacks, it is important that condensation-induced retention loss be recognized as an
additional consideration in the design of LAD’s and spacecraft propellant systems.
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APPENDIX A

DOMAIN ELEMENT INTERPOLATION FUNCTIONS

A. Introduction

Several different types of interpolation functions @y are used to approximate the variation of
velocity, pressure, and temperature on the element level. The form of these functions are
distinguished by their order of variance with respect to the element naturalized coordinates &; and &;
(or & and n, respectively). A ‘diagram illustrating the relationship between a representative
quadrilateral element and the local coordinate frame is shown in figure A-1.
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Figure A-1. Naturalized coordinate frame.

The index N of the base function @y refers to the local node at which the function applies. The
derivation of expressions for @y is based on the nodal positions designated in figure 6. These
designations for node positions are used consistently throughout appendix A.

As was discussed in section IV, the simplest elements employ the same order of variance in
both the &; and &, directions (i.e., types 1, 3, and 5). This form is used for all the interior elements
shown in figure 6, and consists of first-, second-, and fourth-order polynomials expressed in terms of
& and &. The other type of elements employ different interpolation orders in each direction (ie.,
types 2 and 5). Along the meniscus, pressure is modeled by a first-order interpolation in the ¢;-
direction and a second-order in the &;-direction, while temperature is approximated as a second-
order in the &;-direction and fourth-order in the &;-direction. For elements adjacent to the sidewall,
the higher order variation is applied in the &, -direction. The following chapter outlines derivation of
expressions for @y, and its associated first and second-order gradients with respect to the global
coordinate frame x;.

B. Lagrange Polynomials

The two-dimensional base functions ®y are derived by taking the product of the one-

dimensional Lagrange polynomials corresponding to each direction. Each polynomial characterizes
the variance in either the &; or &;-direction at each element node. All of the interpolation functions
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used in this study are based on and require the definition of first-, second-, and fourth-order
Lagrange polynomial equations. These are obtained from the general form:

L@y = H §i 6"” . (A-1)

m=1/mzN (f mi

n represents the order of the approximation, while n+1 represents the total number of nodes
required in the &; direction. &y; is the posmon of node N in terms of naturalized coordinates. For a
linear variance between two endpomts n is set equal to 1 and the products are calculated from m =1
to m = 2. This yields the two Lagrange 1nterpolat10n funcuons

I _ 6 5 f i_l _1
g _[E-EuY_(E41)_ 1
L“”‘(éy-él)‘(1+1)‘“7‘5”4)'
For a second-order variance, n = 2, and one obtains polynomial expressions at three nodes:
n_[Si~Su)[SC §0) (&
ol =22 (227G ()= e A3

)
SN

2%

S
ot -(25 (2
¢, 51;)(5."52;) E+1)[&-
L)Y =
of=(got ez B ) d e
Third-order interpolations were considered early in the study but were not included in the

final version of the model. In any event, the Lagrange polynomials associated with a third-order
variation are obtained in a similar manner by setting n = 3.

L(z)"'——-— (E2-1/9) (£ - (A-4)
L()é”-1—6 E-1D)(E~13),
LOY ==L €D E+13)

L(:)i”——-ﬁ- (E2-1/9) (& +1) .

For a fourth-order variation, n = 4 and one must cons1der polynomials evaluated at the origin,
two endpoints, and two intermediate locations for a total of five nodes.
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L(i)f:%gi(g,.n/z) (E-112) (E-1) (A-5)

LOY =-3 £~ E+DE D,
LOY =4E +12) € ~12) E +D(E ),

LOY =-§E&+ D E+DED

LG)Y =% E (& +172) (& ~172) (£ +1) .

C. Interpolation Functions

1. Function Type 1

The two-dimensional interpolation functions with equivalent orders of approximation in the &;
(or &) and & (or n) directions are constructed by taking the product of the Lagrange polynomials
corresponding to each local node’s & and &; coordinates.

@ = L)y LD - (A-6)

N signifies the element node number, while &(N) and n(N) are its associated naturalized
coordinates. For linear interpolations, the local interpolation function that applies over the two-
dimensional element domain is obtained by multiplying the &; and &, Lagrange functions for each
local node.

¢{1=L(1){IL(2)"=;1{ §18(E D€+,
®) = L(ILQ2) =4 (€ + D€ +1)
O = LIDGLQ); =5 (€ +1NE +1)

ol = L)L)} =% & +1)(E,+]) .

These expressions can be written as a single general equation by applying the coordinate
values at the node under consideration, that is &y and &yp. This approach is appealing because the
node values are independent of &;. The general expression for ®p/ is:

O =3 EmE +DE b+ . (A7)
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2. Function Type 3

The same approach is applied in deriving expressions for the quadratic interpolation functions.
Here one must consider three nodes in each direction and a total of nine interpolation functions. For

the corner nodes (N =1, 3, 5, and 7), one has:

o= LHIL@T = £ DE D
o = LIVILOY = €& € +DESD
o = LHIL@)] =7 1€ +DE 1+
o = LINIL@)] =F & & A& +DE D

which can be expressed more generally as:

Dy = 71[ Ené naE & EmE D ) . N=1,3,5,and7 (A-8a)

For the midside nodes (i.e., noncenter axes nodes) one obtains:

of =LIL@] =4 £ & -DA-ED
o = LOIL@)Y = £ (& #DA-ED)
ol = LHILD) =3 EE#DA-ED
o = LO{L@)Y =5 £ & -1

which in general terms become:

d’ﬁ =%’ & na€ A& ya D1 f) ,
O =4 £ & (Emé #DA-ED

Finally, for the center node one obtains:

@Y = LDILR)) = (1-E D= -
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3. Function Type 5

Derivation of the fourth-order interpolation function is also based on equation (A-6), but
requires considerably more algebra. The following condensed form is obtained for the local nodes
lying on the outside corners, the outside edge off the coordinate axes and the inside corners of the
25-node element shown in figure 6:

Oy = Cl& 1€ +EmAE g DN 28 248 i@ R -1 (A-93)
where:
C=1/36, N=1,3,7,and 9
C=-8/18 , N=2,4,6,8,10,12, 14,and 16
C=64/9 . N=17,19,21, and 23

For the center node (N = 25) one has:
@ = 16[(E 1) 2 14)] [ 2-1)E 2-1/3)] . (A-9b)

All remaining nodes can be expressed in the general form:

O = ClE2-DE -V [E p& p+& np@ELpEL-1)]

(A-9¢)
where:
C=4/6,a=1and f=2 , N=3and 11
C=4/6,a=2and B=1, N=7and 15
C=-3213,a=1and =2 , N =18 and 22
C=-323,a=2and B=1. N =20 and 24
4. Function Type 2

The general expression for the mixed ordered functions is very similar to equation (A-6). The
only difference is that it is comprised of Lagrange polynomials of different order at each local node.
The general formula is:

(Dslv_m = L(I)E(N)L(Z);';(N) s (A-10)
where n and m correspond to the orders applied in the &- and n-directions, respectively. The
combination of first and second order interpolations are needed to maintain consistency between the

number of equations and nodes. There are two types of functions which are applied at the meniscus
and sidewall, namely:
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3" = LD gL vy »

O = LD gL ne) -
For the function adjacent to the meniscus, ®pf-7, the following general equation applies:
oy'=7 Le E4EEMEFD, N=1,2,4,and5  (A-11)

ol = =5 L-£2¢& y &+ . N=3and6
For the sidewall function, ®p/, one has:

¢Z"= LEEFEWEREAD, N=1,3,4and6  (A-12)
@f7 =4 1-EDE mé #D) - N=2and5

5. Function Type 4

One applies the same approach with the combined second and fourth-order elements by again
considering two types of interpolation functions:

@1 = LA F L@ hwy »

@y = L) Fu L)y -

The general forms of these two are the same as in equations (A-11) and (A-12). For the
meniscus function, ®p/-IV, one has the following different forms of interpolation:

OV = CUELELINERE ENEWEMED) ., N=1,3,7,and9: C=1/12 (A-13a)
N=12,4,6,and 10: C = 8/6

S5and 11 (A-13b)

II-IV — 2(5 2_1)(5 2—1/4)(5 1+§ ng 1) N

QI = CAELELINEWE \ENU-EY) , N=2and8:C=1/6 (A-13c¢)
N=13and 15: C=8/3

OV —4(E 1) E-114)(1-E7) . N=14 (A-13d)
For the sidewall function, ®nTV-/, one has:
q’llvv_” = C(4¢ 12\115 f‘l)(é %‘*5 T3 g"'é w€2D /12 (A-14a)
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O = 2E 21N E1ANEE e Y N=3and9 (A-14D)

O = CAELE1NELE  EDU-ED N=6and 12: C=1/6 (A-14c)
N=13and 15: C=8/3

OF ! =4 3-1)(E3-14)(1-ED) . N=14 (A-14d)

D. First-Order Gradients

1. General Form

To derive an expression for the gradient of ®y with respect to x; (i.e., 0®n/dx;), one
recognizes that the interpolation function is expressed as a function of local or naturalized
coordinates, ®y = @ y(&;), which, in turn, are functions of the global domain, & = &;(x;). The
gradient of @y with respect to natural coordinates, therefore, is related to the global domain by
means of the Jacobian, Jg;, where:

oDy oDy

&, = o, (A-15)
and
Oxy Oxp
J.= ox; aé 351
S
95, 0S5

It is also recognized that x; can be expressed as a function of &; by employing an alternative
transformation based on J';;, namely:

ody oDy
B, E, (A-19)
Substituting equation (A-16) into equation (A-15) yields the identity Jy;J';j = &, which implies that
J'i; is equivalent to the inverse of the Jacobian matrix, i.e., J';y = (J;))~1. This inverse is used to
express the global gradient in terms of a locally based derivative:

9Dy 9Dy

— (7)1 .
ARl ONE (A-17)

An expression for the inverse is derived as follows:

a1 9§, {cofac(/, )}
Vi T ox ,k IJ1 . ’
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aX2 ax2

%k, X, | a ox ox x
(COfaC(Jik)}T= _§_;_1_ iiil agz 8,,8“—-8TT 8,10, + 8&1 0,200 8&1 8,04 »
o€, o,
a_EiEp ox
/%) Wi 8_5_, . (A-18)

The determinant of the Jacobian IJ| is expressed as:

ox, ox, Ox, dx; _ _ Ox; OX;
9F 9E, 9L, 3, ’351352

The first task is to obtain an expression for dxp/d; that can be substituted into equation
(A-18). Regardless of the flow variable considered or its order of mterpolatlon the element
boundaries are assumed curved to enable closer approximation of actual meniscus curvature. A
second-order curvature is assumed which means that xj, can be expressed in terms of a quadratic
interpolation with respect to the naturalized coordinates:

= (A-19)

x —(DNpr <I>1x1p +<D9x9p (A-20)

The terms in equation (A-20) can be expanded using the second-order interpolation formulas
given in equation (A-8) to yield:

(D{xlp (5?53—5%52“5 l§§+51§2)x1p (A-21)

-

(b2x2p 2( 52§2+§ 152"52 EDxyp s

3x3p (‘f 252 ¢ 1‘5 +E € %“‘f €2 X3p »

‘D4x4p 5 L( 52‘52 ¢ 52"'5 1+§ D Xap »
Olfrs, =4 EFET+E1E4E1E3-E 8D x5,

6x6p= 5 (—5 2‘5 2~ ‘525 2"’5%‘*‘52) Xep

-

7 X1p= (5 25 3+§ 25 —&1€ g'é 182 X7,
8x8p 5 L EEL+E E+ET &) xgp

9x9p—('§252 52 ‘5 1+1) xg, .
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A generalized expression for xp is obtained by rearranging the terms according to like
products:

x =l ap+bp§l+cp§2+dp51§2+ep§¥ (A-22)
P e E SR ST p S TE

where
ap = 4XQP ’

bp = 2X4p—2x8p s

P
dp =X X3, 45X,
€p = 2x,4,+2x5,-4x,, |
5= 2x2p+2x6p—4x9p ,
8p=—X1ptX3,~2X 4p+x5p——x7p+2x8p ,
hp==x 42X 5 X4 x s = 2X g X7,
Pp=X; 2 2p+X3 p—2x 4p+x5p—2x6p+x7p—2xgp+4x9p .

Differentiating the expression for xp in equation (A-22) by &; yields the following expression
for the position derivative:

ax 1

SE =7 An (A-23)

where
Ap = bp+dp§ 2+2eptf 1+gp§ §+2hp§ i§ 2+2Pp5 15% ’

Apy = cptd & \+2fE 42,8 & y+h EX42p E2E .

Substitution of equation (A-23) into equations (A-18) and (A-19) yields complete
expressions for the inverse and determinant of the Jacobian matrix:

€€
(Jik)_1 = 4ll|7]|kl Apl ’ (A-24)
11 =‘118 (A Ay-AyAL) . (A-25)
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2. Function Tvpe 1

The next step is to calculate the derivative of the test function with respect to the naturalized
coordinates. For the linear function, the general expression in equation (A-7) is expanded to yield:

Of =1 (€ & mb £+ mé +E D) (A-26)

The corresponding partial derivative is:

aq)l
9, (5 ntE ni€ na€16 526 1)) (A-27)
The global derivative d®pnI/dx; is obtained by combining equations (A-24) and (A-27) to yield:
oD, €,
ox; 16IJ| (=€ w+8 16 mE NIAPHE Mi+E 28 MG WA - (A-28)
3. Function Type 3

The gradient of the quadratic function is best solved by considering the corner, midside, and
center nodes separately. For the corner nodes, the expression for @n! in equation (A-8a) is split

into three terms:

&N =CyE,E,E; , (A-29)

where
Cy= % EmSna

E1=§1§2 ’
E,=¢&y &+,

Ey=§& & ,+1 .

The general form of the derivative is then:

@y ;= Cy(E\ E,E5+E \E E+E \EJE3) (A-30)

where
O,

9E, =) (€18 +E 8, .

=)

_1 OF -
Eyi=U lﬁ=(]ﬂc) l§1~/15k1 ’

_1 OF -
Es;=(y) lfi=("ik) 15 N20 k2 -
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Further rearranging of the E-terms in equation (A-30) yields:

Oy, = CyUp ™ (C18 4+Cy8 ) N=1,3,5,and7 (A-31a)
where
Cy= % 5N15 N2 >

Ci =& €+ 1DQ2E N € +])
Cy=& (€ i€ +1DQE € +1) .

For the midside nodes, equation (A-8b) is expressed in the following general form:

Ol = S8 (1E3)(E b2 ) (A-32)

ForN=2or6,a=2and B=1.1fN=4o0r8, o =1and B = 2. The local derivative of equation
(A-32) becomes:

a(DZ_éNa

38, =2 25 nat et DO pt(1-E DL o o+ DS ] - (A-33)

When substituted into equation (A-17), the following general expression is obtained.

Oy, =CrU)Cp8 pp+Cab ), N=2and6;a=2and f=1 (A-31b)
N=4and8;x=1and =2
where
§

C,B = "25 ﬂ(g Nag 2a+§ @
Ca = (1—5 ?3)(25 Na§ a+1) .
For the center node, one differentiates equation (A-8¢) by & to obtain the local derivative:

Py 2 2
E =-2[& (1= )0 y+&,(1-EDd 5] . (A-34)

Substituting equation (A-34) into equation (A-19) yields:
(Dg.i =20p7'[C,8 4+Cy0 4] N=9 (A-31c)
where

¢ = ’5 1(1‘5 %) ’

G, = ’52(1“5 %) .
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4. Function Type 5

Derivation of the gradient of the fourth-order interpolation function requires lengthy algebraic
manipulation. To summarize, one expresses it in general terms:

@y = Cy) (€18 4 +Cy8 5) (A-35a)
For the off-axes nodes, one has:
Cy=136, N=1,5,9 and 13
Cy=-8/18 , N=2,4,6,8,10,12, 14, and 16
Cy=136, N=17,19,21, and 23

C,=(16§ %/15 %*12‘5 ?»'15 %“2’5 1—€ ) (4 ilzg ;"'45 ?vzé ;—5 %‘5 méD
Cy= (168 & 3+ 128 308 7-2& & y) (48 B THAE M ET-ET-EME D
For the center node (N = 25), one has:
Cy=16, N =25
c,=(4£1-3¢)(83-2¢3+1)
c,=(483-3 &,)(ei-5¢€1+) -

For the remaining nodes, one uses the general expression:

D= CyUi) ™ (Cab w*+Cpd i) - (A-35b)
and the coefficients
Cy=213, a=1/=2, N=3and 11
Cy=-32/3, a=1/8=2, N =18 and 22
Cy=2/3, a=2/8=1, N=7and 15
Cy=-32/3, a=2/B=1, N =20 and 24

Ca={483-3 & ) (4E 2L A+4EpE i€ 5-E gl s) »
Cp=(84-5 &2+ ) (168 g€ 3+12E8pE 52658 p) -
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5. Function Tvpe 2

For the type 2 functions, one still employs the general relationship in equations (A-31a) and
(A-35a). For the meniscus elements, type 2a, one has:

Cy=12, N=3and6
¢ = 51\'1(1—5 %) )
Cy=-2& &y & 1+])
Cy=1/4, N=1,2,4,and 5
Ci=¢m §+§N25 2
C=QRE,+E ) E N E+]D) .
For the sidewall elements, type 2b, one has:
Cy=172, N=2and 5
Ci1=-2& (€ ,+])
C,= §N2(1—5 %) ’
Cy=1/4, N=1,3,4,and6
Ci=Q& +¢E ) Ené D),
C,=& (& %‘*5 né ) -
6. Function Type 4

Again, one uses the general expression for the derivative in equations (A-31a) and (A-35a),
and calculates the coefficients for the combined second-fourth order functions. For the meniscus
elements and the off-axes nodes, one has:

Cy=12, N=1,3,7,and 9
Cy=-8/6, N=4,6, 10, and 12
C.=(4E2.E* 3 g3 g2
1= (@ €3 +4E 38 -E 53-8 € ) QE+END S

C,= (16§ %125 ;*'125 13vz§ 3‘2‘5 ~En) (€ f‘*f méD -
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For the noncenter nodes lying on the &;-axis:
Cy=16, N=2and8
Cy=-8/3, N=13and 15
Cr=-28 (4E b +4E M8 -85S mab D)
Cy = (16€ o€ 3+12€ 1§ 3-28 =& yp) (1€ D
For the noncenter nodes lying on the &, -axis:

Cy=2, N=>5and 11
C,=(83-3 83+ Yt +Ew
C2=(4§§‘%52)(§f+§m§1) -

For the center node, one has:

Ci=2¢ (£33 &3+4) -

C,=(4¢3-5 &) a-€D .
The expressions for the sidewall elements are very similar but are based on a different

relationship between the local nodes and naturalized coordinate frame. For the off-axes nodes, one
has:

Cy=112, N=1,5,7and 11
Cy=-8/6, N=2,4,8and 10
Cy = (16 3, E1+12E 116 1-28 - w) €2+ E kD)
Cr=(ELETHAEMET-E1-EmE D @48 ) -
For the noncenter nodes lying on the &;-axis:
Cy=16, N==6and 12

Cy=-8/3, N=13and 15

Cy=(16£ 5, E3+128 3, E3-282-& ) (1-€D)
134



C,=-28,(4§ i/1§‘11+4‘§ ing :1;—5 f‘f mé 1 -
For the noncenter nodes lying on the &,-axis:

Cyv=2, N=3and9
C1=(4§?—%§1)(§§+§N2§2) ,

Cr=(¢1-2 &1+ @t,é .
For the center node, one again has:

Cy=4, N=14
c=(4£3-3¢,)a-¢d

Cr=-2£f£1-2¢1+1).

E. Second-Order Gradients

1. General Form

Second-order gradients arise in the velocity terms of the SIMPLER pressure correction
equation. Both dyadic and Laplacian forms (i.e., CDN”,,-]-, and ®N1T ;, respectively) must be considered
for accurate pressure estimates. Since the gradients pertain to velocity, only the second-order
gradient of the type 3 function need be considered. To derive an expression for the most general form,
ONT;, one begins by treating ®x/l ; as the function to be differentiated in equation (A-17). That is:

(Dll\g,l'j-_— (st)_l ag ((D}IJ,;) . (A'36)

Substitution of the expression for Oy ; from equation (A-17) into equation (A-36) yields:

aq)ll

which upon differentiation becomes:

-1 I 2411
a(th) a(I)N d (DN ) . (A-37)

nm _ -1/ TN Nt 2 TN
o=, (e T e o gt
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The local derivative in compact tensor form can be represented by generalizing equation (A-33) as:

a(DlI
3E = CyC,é, - (A-38)
Further application of the d/d&; operator yields:
a2(1)11 ,
ﬁ:c,vcua,k, (A-39)
where
»_aC
Co=3E,

The local derivative of the Jacobian inverse is expressed in a similar way. Differentiating the
expression for (Jj)~! in equation (A-18) with respect to &, one obtains:

a(J,'k)—l _ 8ip£km

& = AT Apms - (A-40)
where
0A ,,
T,
and
i _
oF, 0
Substitution of equations (A-39) and (A-40) into equation (A-37) yields:
Dy =) Culip Snliulim 4t CrA Ch) .
N 41J1 pms™ kT pms ™k (A-41)
Upon expanding €k, and the terms within parentheses, one obtains:
By = CnEyp (CIA;JZI_CZA]’)I1+C;1Ap2—C;1Apl)(le)-l (A-42)
W

AT | +(C 1A, p-CoA i+ CoA n=CA ) U |

Applying the 9/9&; operator to Apn in equation (A-23) yields an expression for A'pms. The
components of this tensor are:

Ay =2e,+2h & 1 +2p, &5 (A-43)
A[’JIZ = A;)Zl = dp"'zgpg 2+2hp‘§ 1+4Pp€ 16 2

A;:zz =2£,+28,§ 1+2Pp§% .
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The Ci and C'ys coefficients are obtained in a similar manner using the type 3 interpolation
formulas defined in equation (A-31). For the corner nodes, one has:

Ci=E,E N E 4 DQREE+D, N=1,3,5and7  (A-44a)
Co= & (€ ;& 1+ 1DQE € 4+1)
Cii=2¢ yi& € méo+D)
Cip=Cy= Q€ &+ DQRE 3 € 1+1)

C;2= 28 26 (€ m&+D) .

Formulation of the midside nodes follows in a similar manner. Note that for N =2 or 6, ¢ = 2 and
B=1,whilefor N=4or8, a=1and f=2.

Cp=-2E5(E yab2+E ). N=2and6a=2and =1 (A-44b)
Co=(1-E)2E yo€ +1), N=4and8;a=1and f=2
Cpp=-28 (& wal o*D)
Cpa=Cap= ~28 g€ yal a*D) .

C;za =2§ Na(1_§ fi) .

For the center node:

C,=&,(1-¢%, N

C,=&,(1-¢Y)

Cn=01-¢2),
Ci=Cyn=-2§ &, ,

Cn=(1-¢1 .

9 (A-44c)

137

| ¥R






APPENDIX B

DESCRIPTION OF CIC COMPUTER PROGRAM

A. Introduction

The steady-state solutions presented in sections VI to VIII were obtained using the
Combined Interfacial Convection (CIC) program, which was written and specifically tailored to meet
the analytical needs of this study. The program employs the finite element equations derived in
section IV and calculates the tensor coefficients for these equations from the basis functions derived
in appendix A. The program includes a variety of data input and output options and permits
considerable flexibility regarding computer system usage.

The main product of each CIC run is a unit 9 output file that lists the x; and x; coordinates, x)
and x,-component velocities, temperature, and dynamic pressure of each global node in the pore
domain. These data are calculated in a five-loop iteration procedure from the parameters and logic
options defined in a unit 7 input file.

CIC is written in Fortran 77 and was originally designed for interactive use on a Digital
Equipment Corporation (DEC) VAX. However, it soon became apparent that the element density
and interpolation orders required for accurate modeling of velocity, pressure, and temperature
variation in the interline and sidewall regions necessitated use of a Cray-XMP. Although the
program can be executed in an interactive mode, batch processing was used almost exclusively to
generate the results in this study. '

The Cray-XMP was accessed through NASA Marshall Space Flight Center's Engineering
Analysis and Data System (EADS), which permitted simultaneous execution in several batch
queues. The entire compiled version of the CIC code ordinarily took from 4 to 7 Megawords of
memory to run depending on the initial dimension limits set in the program's internal arrays. The
smallest cases consisted of 25 by 20 element domains (MXE = 25 and MYE = 20) while the largest
were dimensioned for 34 by 25 elements (MXE = 34 and MYE = 25).

The following sections briefly describe the CIC program and provide general information
useful for future users of the code. A complete copy of the CIC source code, including all unique
subprograms needed to run with a standard Fortran 77 compiler, is given in appendix C.

B. Program Description

Apart from the convergence test for steady-state and the solution of meniscus geometry,
each iteration loop of the CIC program is structured around the calculation of velocity, pressure or
temperature using equations (88), (89), (83), (84), and (85). However, as was shown in appendix
A, the coefficient tensors in these equations (equation (86)) are formulated and calculated in terms
interpolation functions defined on the element-level. For example, the M1 ,g tensor used in the finite
element equation for velocity is expressed in terms of the variable EA(e,n,m), where
e = global element number, n = local element corresponding to ¢, and m = local element
corresponding to B. Since several local nodes can share the same global node location, construction
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of the coefficients in each finite element equation requires summing the contributions from all
elements in contact with the global node.

For velocity, velocity correction, and temperature (equations (88), (89), and (84),
respectively), the equation for each global node is solved sequentially until a convergence test
involving all node values is satisfied. The appropriate contributions from the locally defined nodes
and tensor coefficients are obtained via application of an association matrix CE(ng,e,). ng
corresponds to the global node number, while ¢, identifies the global elements contacting and
contributing to the finite element equation at ng. With the quadrilateral element geometry used in this
study, the maximum number of elements that can contribute to a single global node is four. The
number of elements e, associated with each n, value is stored in NCE(n,).

With the pressure correction (equations (83) and (85)), however, all the finite element
coefficients are constructed concurrently, and node pressures are solved using Gauss-Jordan
elimination. The coefficients associated with each global node are obtained by sequentially adding
local node contributions on an element-by-element basis.

In section IV and appendix A, the node configurations used to model parameter variation in
the element domain were defined. Each of these local nodes, in turn, has a global counterpart which
is referenced by the coefficients in the finite element equations for velocity, pressure and
temperature. Regardless of the method for summing the local contributions, a consistent matching
between the local and global numbering schemes is required.

For velocity, type 3 elements (fig. 6) are employed throughout the domain and nine local
nodes per element. The approach for numbering the global nodes is best exemplified by the 3 by 3
element domain on the left-hand side of figure B-1. All elements are defined by their global reference
e. The global node n, associated with any element’s local node n; is given by n, = CQ(e,n;). CQ(e,n;)
and CE(ng,e,) are used to construct finite element coefficients for velocity.

5 5% 5% 53

SO — oo
TP %% ., .
V@<l | eve=1 | edlea=2 6556'56'5 § S 60&2"62‘;
% % %0 % 2 s P 74
%% 6% o 4% %
80 8 82 83
 SCERTIR CCARSTIR (CERETIR 01 So—h >t
e2=2 | eSlel=1 | etle2=3
8 86 87
22 ®5 Pu ®s T2 %7 Pos o % e e
88 89 %0, 9
RV CTRERY) T33 7935 e o
=7/ 2=4 eRlel=2 &9/ =5 L 9 9 04 95
36 937 Pz %30 f0 ®u P2 (e ¢ o
9 97 98 99
G %n 5 % T % o >
Nominal Type 3 Additional for Type
Definition 4 and 5 Elements

Figure B-1. Global node numbering scheme (velocity and temperature).
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The solution domain for temperature is similar to that for velocity. Here, however, one
employs type 5 elements in the upper corners, type 4a elements for noncorner elements along the
meniscus, type 4b elements in noncorner elements along the sidewall and type 3 elements
throughout the rest of the domain. Referring again to figure B-1, the domain consists of 99 global
nodes—the first 49 of which coincide with the definition used for velocity. The additional 50 nodes in
the right-hand diagram account for the extra local nodes needed for the type 4 and 5 elements.

Because of the variety of element types, a more complex approach to the global/local node
association must be employed. The coincidence matrix that matches the local node number to its
appropriate global value is embodied in the program variables CQ(e,n;), C24(ez,n2) and Cdd(es,n3).
When summing type 3 element contributions, which is done throughout the interior elements, the
global node is specified directly by the value of CQ(e,n;), where e = global element number and n; =
local node number. When the summing involves type 4 or 5 elements, the C24 and C44 arrays are
used. Unlike CQ, the element number index for these arrays matches the ordering of type 4 and 5
elements in the domain, namely e, and e3. Translation of the e designation, which is used to identify
element contributions with CE(ng,e,), into e; and e3 is accomplished through the array ECL(e,m).
ECL(e,1) denotes the element type, where ECL(e,1) = 0, 1 or 2 specifies whether e is a type 3, 4 or
5 element, respectively. For e values in which ECL(e,1) # 0, ECL(e,2) represents the e, or e3 value
corresponding to e.

The coincidence matrices are used primarily to relate the locally defined tensor coefficients to
the global nodes referenced in the finite element equations. An example is the designation of the
global node corresponding to the first sidewall element's (e = 4 and e, = 2) fifth local node (ny = 5).
The global node is obtained from the compound expression C24(ECL(4,2),5) = 31, where ECL(4,1)
=1 (type 4 element) and ECL(4,2) = 2 (e, designation). Similarly, the global node for the fourth local
node (n3 = 4) of the second corner element (¢ = 3 and ¢3 = 2) is determined from C44(ECL(3,2),4) =
83, where ECL(3,1) = 2 (type 5 element) and ECL(3,2) = 2 (e3 designation). Note that element
types 4a and 4b are distinguished by whether ¢ < NXE (number of elements in x;-direction) or e >
NXE, respectively.

The same type of bookkeeping procedure is used with pressure. Here, however, the solution
routine is based on the simpler global geometry shown in figure B-2.

T P> 3 ?s o7 *
e=1 e=2 e= o
- - - Y
=1 @2=1 L 3=2 % % W B2 % M
L5 1G 7 Ps T T3
e= €= e=
=2 el=1 a2=3
\C Pic T le 5 *%
e= e=8 e=
B n-4 el=2 Q=4
ERE”REREY T h16 * *%
Nominal Type 1 Additional for Type
Definition 2 and 3 Elements

Figure B-2. Global node numbering scheme (pressure).
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The ECL(e,1) values of 0, 1 and 2 now correspond to type 1, 2 and 3 elements, and the
coincidence arrays associated with these elements are CL(eq,m1), CLLQ(ez,n3) and CLQ(e3,n3),
respectively. CLLQ and CLQ play the same role as C24 and C44 before. However, CL is referenced
according to the label e; which represents the ordering of type 1 elements.

Although the Gauss-Jordan solution routine employs the node definition shown in figure B-2,
CIC output of flow parameter values (including pressure), and the CL, CLLQ, and CLQ coincidence
matrices are based on the velocity-node definition in figure B-1. To construct the finite element
coefficients for pressure, CIC employs an additional array, CNODE(n,), which associates the
velocity-based global node n, to that of pressure n, by n, = CNODE(n,). Note that most of the n,-
values lack an associated n, designation. At the completion of each pressure iteration, the results
are recast in terms of the velocity reference via n, = GNODE(n,).

The manipulation and use of coincidence arrays is potentially the most confusing aspect of the
CIC program. The rest of the algorithms and procedures are more straightforward and are
documented in the comment blocks of the source code listed in appendix C. To facilitate future
reference, a summary of key program variables, excluding those included in the data read in
statements, is provided in table B-1.

Table B-1. Key CIC program variables.
Code Parameter LD* ripti

MXE, MYE 1 Specifies maximum number of elements in x; and x; directions for code sizing purposes.
Specified in PARAMETER statement.

XI(m,n) D &1 and & absissae values for Gaussian quadrature integration. m = NPOINT + 1. n = £
or &y direction.

W(m) D Ordinate values corresponding to X1 for Gaussian quadrature integration. m = NPOINT +
1.

Al(m) to DI(m) D ap to dp coefficients for 1st order approximation between xp = xp(xk).

XINL(m,n) D Naturalized coordinates for four local nodes in type 1 element. m = local node number. n

=E1 or & value.

XINLQ(m,n,p) D Naturalized coordinates for six local nodes in type 2 e¢lements. m = local node number. n
=1 or &7 value. p = type 2a or 2b element.

DETIL D Jacobian determinant for type 1 element.

A2(m) to P2(m) D ap to pp coefficients for 2nd order approximation between xp = xp(xk).

JINV(i,k) D Inverse Jacobian tensor for type 3 element. (Jik)-1.

XG(m,n) D x; and x values for each global node. m = number of global node. n = x1 or x2 value.
XINQ D Naturalized coordinates for nine local nodes in type 3 element.

DETIQ D Jacobian determinant for type 3 element.

* I = User Controlled (Independent)/Determined by CIC (Dependent)
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Table B-1. Key CIC program variables (continued).
Code Parameter I/D  Description

VEL(m,n) D x1 and x2 velocity components for each global node. m = number of global node. n = x| or
X2 value.

PSI(m) D Stream function values at each global node. m = number of global node.

SURFL D Surface Iength for each boundary element. Four boundaries.

SURFN D x1 and x2 normal components corresponding for SURFL element surfaces.

SURFT D x1 and x2 wangent components corresponding to SURFL element surfaces.

CL{(m,n) D Global node number (global-local node coincidence matrix) for type 1 element
definition. m = element number. n = local node number.

CLLQ(m,n) D Global node number (global-local node coincidence matrix) for type 2 element
definition. m = element number. n = local node number.

CLQ(m,n) D Global node number (global-local node coincidence matrix) for type 3 element
definition. m = element number. n = local node number.

CQ(m,n) D Global node number (global-local node coincidence matrix) for type 3 element
definition. m = element number. n = local node number.

ECL(m,n) D Association matrix

XSURF(m) D x1 positions for surface parameter calculations. m = NXP.

YSURF(m) D y(s) values corresponding to XSURF values. m = NXP.

YSURFO(m) D y(s) values for pure isothermal, static meniscus solution.

PSURF(m) D Pd values corresponding to XSURF values.

PBUB(m) D Corrected bubble points. = Pvapor - PSURF

TSURF(m) D Surface temperature values corresponding to XSURF.

SURFNN(m,n) D Surface normal vectors at points corresponding to XSURF. m = NXP. n = nl or n2.

SURFNT(m,n) D Surface tangent vectors at points corresponding to XSURF. m = NXP. n = nl or n2.

IMODE I Computer system operation mode. = 0: VAX batch mode, = 1: VAX interactive mode,

and = 2: CRAY batch mode.
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Code Parameter /D

NLNQ
NLNL
TPARAM
ACCEL(m)
QIN(m)
SB(i,k)
SB2(i,k)
SC(i)

SC2(i)

NXP, NYP
NGNODE
NELEMENT
NROW, NCOL
NGNODE2
RA

VREC
NLNS

NLNC
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Table B-1. Key CIC program variables (continued).

Description

Number of local nodes for type 3 element (9).

Number of local nodes for type 1 element (4).

Time step factor h. h = 0.5 for Crank-Nicholson scheme.

Acceleration with respect to Earth gravity. m = components in -x1 and -x2 direction.
Heat input rate (disabled).

2nd-order surface variable integral matrix. = 30(Q;¢"3)/1¢ in Eq. 4.42.

4th-order surface variable integral matrix. = S670(Q;;"3)/I€ in Eq. 4.42.

2nd-order surface variable integral matrix. = 6(Q;"2)/I¢ in Eq. 4.35.

4th-order surface variable integral matrix. = 90(Q;*2)/l¢ in Eq. 4.35.
Number of global nodes in x1 and x2 direction. NXP = 2NXE + 1.

Number of global nodes based on type 3 element definition for all elements.
Total number of elements.

2 x number of global nodes along top and side of domain.

Total number of global nodes. Includes 4th-order temperature elements.
Rayleigh number. = BO*MAIN*RVOLSURF.

Recoil parameter. = CA*(FRHO-1)/REVAPIN**2.

Number of loca! nodes for sidewall elements in pressure calculation.

Number of local nodes for corner elements in pressure calculation.



B. Input/Output Structure

CIC was originally developed to run interactively on the VAX, or in batch mode on either the
VAX or CRAY. These three options are distinguished by the integer flag IMODE which is controlled
via a DATA statement in the CAV module. IMODE = 0, 1, and 2 specifies an input/output format
compatible with VAX batch, VAX interactive and CRAY batch operations, respectively. Nearly all of
the steady-state parameter solutions obtained in this study were performed in the CRAY batch
mode, where IMODE = 2. This approach was preferred due to the sizable memory requirements of
the program.

The input/output file structure for this mode of operation is illustrated in figure B-3. This
figure identifies all the files needed to run a case. It consists of three input and four output files.

Input CIC Output
Unit1 Unit3
Command for Unit 9-tyj Specified parameter set after
graphics data dump into Unit 1} | [ 7°°°°7 each time step
at end of next steady-stafacaaa > * "large3.dat”
iteration
large3.ts2 »
CAV | - General output of specified
Unit 2 parameter values
Command for program * "output.dat”
termination and outputdump | _____ -
into Unit 9 file .
* "large3.tst” Unit9
Graphics output. Steady-state
""" parameter values at all nodes
* "plot.dat”
Unit 7
Main input data file

Unit 10

...... . Graphics output at end of time
step. Enabled by Unit 1 file.

* "clrg3.dat”

"

* "input.dat”

Figure B-3. CIC input/output file structure.

The unit 7 input file is required to execute the CIC program and contains critical data, such as
parameter values, input/output control flags and heating regime. An example of this file is shown in
table B-2 along with a variable description list in table B-3. When IMODE = 2, the unit 7 file is
designated as “input.dat” prior to all read in or data manipulation statements.
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Table B-2. CIC unit 7 input file.

1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012
Case 1C01
Pr lambda frho Bo Bie Ma Rs Cr
el e-1 e+3 e-6 e+l e+3 e-1 e-8

HUGE3
DATA SET: FILE SPECIFICATION

Unit 8 output file flag (IOUT8) 1
Unit 9 output file flag (IOUT9) 1
Sidewall heating option (ITYPE) 0
Press interp func option (IPRESS) 1
Surf param inclusion option (ICURVE) 7
Meniscus symmetry flag (ISYMM) 1
Steady-state init temp flag (ISSTEMP) 1
DATA SET: PROPERTY DATA

Contact angle (CANG) 1.5000E+01
Bond number (BO) 1.0000E-06
Capillary number-disabled (CA) 1.0000E-20
Marangoni number (MA) 1.0000E+03
Vol to surf resp ratio (RVOLSURF) 1.0000E-01
Prandtl number (PR) 1.0000E+00
Evaporation resistance (REVAP) 1.0000E+03
Crispation number (CR) 1.0000E-08
Lig dens/vapor dens (FRHO) 1.0000E+03
Dimensionless lat heat (LHS) 1.0000E+30
Biot number (BI) 1.0000E+02
Reference corner press (PCORNER) 8.0000E+05
Initial lig temperature (TINIT) 1.0000E+00
Aspect ratio- height/width (RASPECT) 1.0000E+00
DATA SET: CONVERGENCE CRITERIA

Vel conv error tolerance (VTOL) 1.0000E-03
Press conv error tolerance (PTOL) 2.0000E-03
Temp conv error tolerance (TTOL) 5.0000E-05
Steady-state conv tolerance (SSTOL) 1.0000E-04
Meniscus conv tolerance (MENTOL) 1.0000E-03
Max time increment (DELTMAX) 1.0000E-04
DATA SET: STEP AND INTERVAL DATA

Maximum number of time steps (NTSTEP) 8000
Number elements in Xl-direction (NXE) 35
Number of side elements (NSMALL(1)) 0
Scaling ratio (FSCALE(1)) 2.0000E+00
Number elements in X2-direction (NYE) 30
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Table B-2. CIC unit 7 input file (continued).

Number of side elements (NSMALL(2)) 0
Scaling ratio (FSCALE(2)) 2.0000E+00
Number cuadrature integ pts (NPOINT) 3
Meniscus integ interval size (NINT) 10000
# Marangoni number ramp-up steps 1
# Revap resistance ramp-up steps 1

DATA SET: PLOT AND OUTPUT SPECIFICATIONS

Nodes printed out for 1 2 3 4

Interactive Display 72 73 74 75
143 144 145 146
214 215 216 217
285 286 287 288
356 357 358 359

Number of isotherms (unit 9 only) 20
Number of streamlines 20
Number of isobars 80
Plot velocity scale (unit 9 only) 3.0000E-01
Plot arrow scale 2.0000E-02
Plot arrow angle 2.0000E+01

5
76
147
218
289
360

6

148
219
290
361
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Parameter

lines 1 and 2
lines 3 to 5
line 6
QUETYPE

IOUTS
IOUT9
ITYPE

IPRESS

ICURVE

ISYMM
ISSTEMP
CANG
BO

CA

MAIN
RVOLSURF
PR
REVAPIN
CR

FRHO

LHS

BI
PCORNER
TINIT
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Table B-3. CIC input file variable description.

Description

Space location reference. Skipped by CAV read statement.

User title and file description. Copied onto unit 8 output file.

Skipped by CAV read statement.

Queue type specification for batch execution on the NASA MSFC EADS1 Cray-XMP.
QUETYPE controls read in of unit 1 and 2 files, and creation unit 3 and 10 files. Possible
queue types are "HUGE3", "HUGE2", "LARGE4", "LARGE3" AND "LARGE2".

Unit 8 output option flag. = 0: no unit 8 output, = 1: abbreviated unit 8 output, and = 2:
full-size unit 8§ output.

Unit 9 output option flag. = 0: no unit 9 output, and = 1. unit 9 output created at
completion of meniscus convergence.

Heating mode option flag. = 0: superheated, isothermal conditions along boundaries 1,2
and 3, and = 1: subcooled conditions over the same boundaries.

Option flag dictating pressure interpolation order in corner, sidewall and meniscus
elements. = 0: 1st-order (type 1) elements throughout domain. = 1: type 3 in corners and
type 2 along sidewall and meniscus.

Variable inclusion option for meniscus calculation. = 0: hydrostatic pressure (Bo term). =
1: Bo and Pd terms. = 2: Bo and recoil (Vr) terms. = 3: Bo and surface tension variation
(Cr) terms. = 4: Bo, Pd and Vr terms. = 5: Bo, Pd and Cr terms. = 6: Bo, Vr and Cr terms.
= 7: Bo, Pd, Vr and Cr terms. = 8: Viscous stress terms only. = 9: All surface variables.
Symmetry option. = 1: meniscus integration performed on only one side.

Initial basic state temperature flag. = 1: basic state used as initial temperature distribution.
Contact angle o (deg)

Bond number Bo

Capillary number Ca. Calculated from Ca = CR/Ma if Ma # 0. Input value of Ca used if
Ma =0.

Marangoni number Ma.

Thermal response ratio A.

Prandd number Pr

Interfacial resistance Rs

Crispation number Cr

Ratio liquid/vapor density fp.

Latent heat parameter A.

Biot number Bi.

Reference pressure in corners for calculation*

Initial liquid temperature. Needed only if ISSTEMP = 1.



Table B-3. CIC input file variable description (continued).

RASPECT R Aspect ratio = 1.

VTOL R Tolerance for velocity calculation iteration.

PTOL R Convergence tolerance for pressure calculation iteration.

TTOL R Convergence tolerance for temperature calculation iteration.

SSTOL R Convergence tolerance for steady-state convergence.

MENTOL R Convergence tolerance for meniscus convergence.

DELTMAX R Initial estimate and maximum time step value.

NTSTEP R Maximum number of time steps in each steady-state iteration.

NXE, NYE R Number of elements in x; and x; directions. Controls size of numerical domain.

NSMALL(m) 1 Number of elements to scale width-wise along sidewalls (m = 1) and along meniscus (m =
2). Set = 0 for normal sizing.

FSCALE(m) R Scale factor used with NSMALL. Disabled when NSMALL(m) = 0.

NPOINT I Number of points for Gaussian quadrature integration.

NINT I Number of subintervals for meniscus integration and calculation. As calculated by dividing
pore half-cavity width by NINT.

NMA I Number of time steps for Ma to reach specified MAIN value. Relaxes and eases
convergence for high Ma.

NREVAP I Number of time steps for Rs to reach specified REVAPIN value. Relaxes and eases
convergence for low Rs.

PNODE(m) I Global nodes printed out in unit 3 and 8 outputs. Must specify 36 node numbers in form
shown in sample unit 7 input file. m = global node number. PNODE(m) = global node
number.

NCONTOUR I Dummy variable used to copy required graphics program data from unit 7 to unit 9.
Represents number of isotherms, streamlines and isobars for plot package.

XARROW R Dummy variable used to copy required graphics program data from unit 7 to unit 9.

Designates arrow properties for velocity vector graphics.

The other two input files enable review of iteration progress and a limited degree of program
control during batch execution. The name of the file that is read in depends on the QUETYPE
assignment in the unit 7 file. For example, the names given in figure B-3 pertain to a case run in the
“large3” queue. Note that the name used for the queue depends entirely on the system used. These
correspond to the designations used by the EADSI1 system at NASA MSFC.

The unit 1 file consists of a single line containing a value of 0 or 1 for the variable ICHK, as
shown in the example in table B-4. The file is checked at completion of every time step. Changing
the value of ICHK to 1 causes CAV to print out a complete variable/node summary (unit 9-type
output) which is automatically dumped into the unit 10 output file. Note that the unit 10 output is
also generated at the end of every steady-state iteration. If ICHK = 1, ICHK is reset to O at the
completion of the unit 10 data dump.

Table B-4. CIC unit 1 input file.
Graphics printout? (=0:no; =l:yes) 0

The unit 2 file also consists of a single line but specifies the value of the variable IGO. An
example of this file is shown in table B-5. Ordinarily, IGO is set to 1. When IGO = 0, the program is
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instructed to terminate program execution and dump the current output variable contents into the unit
9 output file. As with ICHK, the value of IGO in unit 2 is reset to 1 when this operation occurs.

Table B-5. CIC unit 2 input file.
Continuation flag {(=1l:continue; =0:stop) 1

The most important output file from the standpoint of this study is the unit 9 file “plot.dat”.
This file contains a summary of the input variables read in through unit 7 and a complete summary of
the velocity, temperature, stream function, pressure and node locations for each global node. Note
that only the global nodes associated with the type 3 velocity-based definition are printed out. This
file repeatedly provided the basic data used for graphics/plot applications, first-order surface
deformation and other parameter calculations. The generation of the unit 9 output is enabled by
setting IOUT9 = | in the unit 7 input file.

The unit § file provides a summary of velocity, temperature and pressure at the global nodes
specified in the PNODE array in unit 7. A total of 36 values can be printed out at each time. The size
of this file depends on the value of IOUTS8 specified in unit 7. When IOUT8 = 2, an extensive
summary showing the parameter values at the end of each time step is recorded onto unit 8. With
IOUTS8 = 1, the summary is briefer and only prints the values at the end of each meniscus iteration.
When IOUT8 = 0, no unit 8 file is generated. This file was extremely useful during the development
and testing of new algorithms and procedures in the CIC code.

An updated version of the unit 3 output file is created at the completion of each time step, and
it presents the variable values at the nodes specified in the PNODE array. It also shows the
convergence trends for all the iteration loop variables, including the meniscus and steady-state
temperature. This file is extremely useful for monitoring program status and execution.

As was mentioned before, the unit 10 output file is created in response to the value of ICHK
specified in unit 1. It is also generated after completion of steady-state convergence and before
initiation of the next meniscus iteration step.

C. Program/Subprogram Structure

CIC consists of a main program module (CAV) and 25 subprograms. The relationship
between CAV and its supporting subprograms is shown in figure B-4, and a listing of the entire
program source code is provided in appendix C. Following is a description of the various subprogram
elements.

CAYV performs almost all of the general calculations in CIC. Its functions include: (1) file and
data initialization and input, (2) velocity, pressure, temperature and meniscus iteration loops and
convergence tests, and (3) data output. Callouts for all of the five main ancillary subprogram
functions (i.e., domain geometric initialization, calculation of finite element equation coefficient
tensors, meniscus calculation, stream function calculation and matrix solution) reside and are
sequenced within the CAV module.

The primary role of GEOM is to establish the global node/local node coincidence arrays
discussed in section B.2 and to calculate the coordinates for each global and local node. In addition,
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Figure B-4. CIC code structure.

geometric properties of surface elements, such as unit normal/tangent vectors and surface lengths,
are also determined. This subprogram is critical because it specifies the geometric characteristics
that enable calculation of finite element coefficients. The QCAL function is used several times to
estimate intermediate points in the quadratic elements. Based on the x; and x, values at three
known points, it calculates second-order coefficients and outputs a value of x; corresponding to an
input value of x;.

The GEOM2 subprogram was originally written to permit incorporation of smaller element
sizes in the upper corner and sidewall regions. Using FSCALE(2) and NSMALL(2) the elements in
the half-cavity along the sidewall and meniscus are contracted relative to those in the center. This
subprogram was used with marginal success and did not improve accuracy significantly. Its operation
is disabled by setting NSMALL = 0.

TENSCAL is called after GEOM in the CAV module and calculates the coefficient tensors
used in the CAYV finite element equations. In the subprogram, (Jix)-! and weighting coefficients are
determined and used in several Gaussian quadrature integrations of the coefficients. These
integrations refer to several subprograms representing the interpolation functions and their various
gradient forms defined in appendix A. Once calculated, these coefficients are transferred back to the
main program via the TENSOR common block. In addition to the coefficients applied for the domain
variables, this subprogram also calculates the second-order surface tensor used in application of the
velocity Neumann condition for thermocapillary flow.

Calculation of the base function value at individual nodes is performed with five different
functions. For types 1 to 5, one has PHIL, PHILQ, PHIQ, PHI24, and PHI4, respectively. Calculation
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of the first-order gradients of the type 1 to S interpolation formulas are performed in DPDXL,
DPDXLQ, DPDXQ, DPDX24, and DPDX4. In all cases, (J;x)-! and the coordinate coefficients are
calculated in TENSCAL and used in the determination of @y ;. The SIMPLER pressure correction
equation contains two terms containing second-order gradients. These coefficients make use of the
DPDXDYQ function.

TENSCAL calls out two other subprograms. GQWEIGHT is used to determine the Gaussian
quadrature absissae and ordinate values used in the TENSCAL integrations. These values are
permanently encoded via DATA statements in the subroutine. Another function is EPS which
performs the same operation as the Einstein permutation symbol €;;.

The third main module called by CAV is the MENISCUS subroutine. In addition to controlling
the iteration and convergence check on meniscus solution, it also calculates the coefficients used in
the second-order representation of surface velocity and temperature, and the combined first/second-
order variation of pressure. Its ancillary function FUNC2 is used to estimate coefficients for a
logarithmic curve fit when Bi and the temperature gradient near the sidewall are very high.

The actual integral solution of the surface for each estimate of center line curvature is
performed in the CURVE subroutine. Here, the integration begins at the center line and continues
until the surface intercepts the sidewall. The resulting value of contact angle is used in MENISCUS
to estimate a new center line curvature and to guide convergence to a solution. The CURVE
subroutine calls two functions, FUNC and FSIN. FUNC calculates an intermediate value of
temperature or pressure based on the coefficients calculated in MENISCUS. Its logic distinguishes
between first, second-order, and logarithmic curve fits. FSIN is used merely to ensure a consistent
definition of the contour angle in instances where the curvature is negative along the surface.

The last two subprograms called by CAV are used in specific calculation procedures. GAUSS
is a Gauss-Jordan elimination routine that solves nodal pressure values given a coefficient and
objective matrix. STREAM is used prior to the unit 9 data dump and calculates stream function
based on the values of velocity and node coordinates.
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APPENDIX C

CIC PROGRAM SOURCE CODE

A. Main Program Module (CAYV)

C**********************************************************************

PROGRAM CAV

C**********************************************************************

NN NNNO0ONO00AO

Main program module of Combined Interfacial Convection (CIC) model.
CIC calculates the steady-state velocities, stream functions,
temperatures, pressures and surface morphology of a two-dimensional,
rectangular liquid pore subjected to various heating conditions.
Program employs finite element equations based on the Galerkin method.
Vertical sides defined by solid isothermal surfaces while upper
surface represented by deformable meniscus. Lower horizontal surface
is open to large reservoir that permits liquid flow into and out of
cavity. Evaporation or condensation allowed to occur depending on
whether surfaces 1 to 3 are superheated or subcooled with respect to
the isothermal saturated vapor above the meniscus. The main convective
effects accounted for in the model include: thermocapillary stress
caused by surface temperature gradients, buoyancy, and interfacial
mass transfer.

This program represents a culmination of analytical efforts in support
of the Liquid Acquisition Device Characterization, a NASA MSFC CDDF

research project begun in Nov 1990. Final version of program written
by EP53/George R. Schmidt on 3/17/93.

C**********************************************************************

C

C

Array dimension parameters

# elements in x & y direcs
# nodes in x-direction
| # nodes in y-direction

PARAMETER (MXE= 25, MYE= 20) !
PARAMETER (MXN= 1+2*MXE) !
PARAMETER (MYN= 1+2*MYE) !
PARAMETER (MTE= MXE*MYE) | total # elements

PARAMETER (MTN= MXN*MYN) 1 total # nodes (quadratic)
PARAMETER (MTE2= MXE-2+2* (MYE-1)) | # 6-node pressure elements
PARAMETER (MTEl= MTE-MTE2-2) 1 # 4-node pressure elements
PARAMETER (MTCl= (1+MXE)* (1+MYE)) | # corner nodes

PARAMETER (MTC2= 2* (1+4MYE)+1+MXE+2) ! extra nodes for mixed press
PARAMETER (MTC= MTC1+MTC2) | total # press nodes
PARAMETER (MTN2= MTN+4*MYN+2*MXN+8)} ! tot # nodes (w/4th-order)

Main program common blocks
COMMON/VINTEG/XI(10,2),W(10)
COMMON/VLIN/Al(Z),B1(2),C1(2),D1(2),XINL(4,2),XINLQ(6,2,2),DETJL
COMMON/VQUAD/

*A2(2),B2(2),C2(2),D2(2),E2(2),F2(2),G2(2),H2(2),P2(2),
*XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),ADl(Z),ADZ(Z),BD1(2),BD2(2)
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COMMON/GRID/
*XG(MTN2, 2) , VEL (MTN, 2) , PSI (MTN) , SURFL(4,MXE) , SURFN (4, MXE, 2) ,
*SURFT (4, MXE, 2)

COMMON/GRIDTYPE/
*CL(MTE1, 4) ,CLLQ (MTE2, 6) ,CLQ(2,9) , ECL(MTE, 2} ,CQ(MTE, 9) , GNODE (MTC) ,
*CNODE (MTN) , C24 (MTE2, 15) ,C44(2,25) , PNODE(36) ,NSURF (4},
* SURFNODE (4, MXN) , CSURF (4 ,MXE, 3} ,CE (MTN2, 4) ,NCE (MTN2) ,
*CES (MXN, 2) , NCES (MXN) , IDIRICH (MTN2)

COMMON/SURFTYPE/ NESURF (4)

COMMON/TENSOR/

*EA (MTE, 9, 9), EB(MTE, 9,9,9,2), EC(MTE, 9.9),
*EA24V (MTE2, 9,15), EB24(MTEZ,15,9,15,2), EC24(MTEZ2, 15,15},
*EA44V(2,9,25), EB44(2,25,9,25,2), EC44(2,25,25)},
*EA24T (MTE2, 15,15), EA44T(2,25,25),

*ED(MTE1, 9,4,2), EDLQ(MTE2,9,6,2), EDQ(2,9,9,2),
*EE(MTEL, 4,4), EELQ (MTEZ2,6,6), EEQ(2,9,9)},

*EF (MTEL, 4,9,2), EFLQ(MIE2,6,9,2), EFQ(2,9,9,2},
*EG(MTE1, 4,9,2,9,2),EGLQ{(MTE2,6,9,2,9,2), EGQ(2,9,9,2,9,2),
*EH (MTE1, 4,9,9,2,2),EHLQ(MTE2,6,9,9,2,2), EHQ(2,9,9,9,2,2),
*EQ(MTE, 9,2,9,2}, SAQ(MXE, 3,9), SAQ2(2,5,25)

COMMON/MENVAR/
* ADUM(3,MXE), BDUM(3,MXE),CDUM(3,MXE) ,APDUM(2) ,AQDUM(2)

COMMON/ SURFACE/
*XSURF (MXN) , YSURF (MXN) , YSURF(0 (MXN) , PSURF (MXN) , PBUB (MXN) ,
*TSURF (MXN) , SURFNN (MXN, 2) , SURFNT (MXN, 2)

COMMON/ PLOT/
*IMODE, IOUT8, IOUT9

COMMON/MXTRAN/
>AMAT (MTC, MTC) , BVEC (MTC) , XVEC (MTC)

C Specification of other arrays and program variable types

DIMENSION YSTAT {MxXN)

DIMENSION TEMP (MTNZ2), TEMPQ {MTN2), PREV(MTN2, 2)
DIMENSION PDYN(MTN} , PDYNO (MTN)

DIMENSION VELQ (MTN,2),DVEL(MTN, 2)

DIMENSION DP(MTC)

DIMENSION ACCEL({2),NSN(3),NSMALL{2),FSCALE(2)
DIMENSION SB(3,3),8C(3),8B2(5,5),8C2(5)

DOUBLE PRECISICN ADUM, BDUM,CDUM, DDUM, XSURF, YSURF, ALPHA, PSURF, TSURF
DOUBLE PRECISION SURFNN, SURFNT, YSURFO, PBUB, APDUM, AQDUM, DVREC
DOUBLE PRECISION DCANG, DBO,DCA,DMA, DPR, DREVAP, DPREF, DRASPECT
DOUBLE PRECISION DSUM, YERR, DPVAP, MENTOL, DYREF, DBI, DCR, DFRHO
DOUBLE PRECISION X1,X2,X3,V1,V2,V3,AC,BC,DER

INTEGER CL,CQ,CLLQ,CLQ, ECL, GNODE, CNODE, PNODE, SURFNODE, CSURF
INTEGER GAM, BETA,R, S, P,CE,CES,C24,C44

REAL MA,MNM1,MN3,MN4,JINV,LHS,MAIN

CHARACTER*12 TITF,TITF2,QUETYPE

CHARACTER*80 TIT(3)

CHARACTER*40 TITLINE
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C Initialization of non-input parameters

DATA NLNQ,NLNL/9,4/ ! Number of local nodes (quad and linear)

DATA TPARAM/.S5/ ! Time step factor (Crank-Nicholson)

DATA ACCEL/0.,1./ ! Normalized acceleration

IMODE= 2 ! 0= VAX batch, 1= VAX inter, 2= CRAY batch
IGo= 1 ! Stop execution flag- used in CRAY batch mode

C Integral tensors used in formulating meniscus surface contributions
DATA (SB(1,1),1=1,3)/ 4., 2., -1./,

(sB(2,1),1=1,3)/ 2., 16., 2./,
(sB(3,1),1=1,3)/ -1., 2., 4./

DATA ($B2(1,I),I=1,5%)/ 292., 296.,-174., 56., -2%9./,
* (sB2(2,1I),I=1,5)/ 296.,1792.,-384., 256., 56./,
* (sB2(3,1I),I=1,5)/-174.,-384.,1872.,-384.,-174./,
* (sB2(4,1),1I=1,5)/ 56., 256.,-384.,1792., 296./,
* (sB2(5,1),I=1,5)/ -29., ©56.,-174., 296., 292./

DATA SC / 1., 4., 1./
DATA sc2/ 7., 32., 12., 32., 7./

C Input/output device assignment. Data input and read statements

IF (IMODE.EQ.2) THEN
OPEN (UNIT=7,FILE="'input.dat’', STATUS="'UNKNOWN")
TITF= 'input.dat v
ELSE IF (IMODE.EQ.1) THEN
WRITE(6,1000)
READ(S5,1040)TITF
OPEN(UNIT=7,FILE=TITF, STATUS="'0OLD")
ELSE
TITF= 'VAX.BATCH
END IF

READ (7,1002) (TIT(J),Jd=1,3)
READ (7,1070)QUETYPE, TITF2
READ (7,1003)TITLINE, IOUTS8
READ (7,1003)TITLINE, IOUTS

IF (IMODE.EQ.2) THEN
IF (IOUT8.NE.0) OPEN{(UNIT=8,FILE='ocutput.dat',6 STATUS='UNKNOWN')
IF (IOUTS.NE.0) OPEN{UNIT=9,FILE='plot.dat', STATUS='UNKNOWN")
ELSE IF (IMODE.EQ.1) THEN
IF (IOUT8.NE.0) OPEN{UNIT=8,FILE='PORE.OUT', STATUS='NEW')
IF (IOUT9.NE.0) OPEN{UNIT=9,FILE='PORE.PLOT', STATUS='NEW')
END IF

IF {(IOUT8.NE.0) WRITE(8,1002) (TIT(J),J=1,3)
READ (7,1003)TITLINE, ITYPE
IF (IOUT8.NE.0) WRITE(8,1003)TITLINE, ITYPE
IF (IOUT9.NE.0) WRITE(S9,1073)TITLINE, ITYPE
READ (7,1003)TITLINE, IPRESS
IF (IOUT8.NE.0) WRITE(8,1003)TITLINE, IPRESS
IF (IOUTS.NE.0) WRITE(9,1073)TITLINE, IPRESS
READ (7,1003)TITLINE, ICURVE
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IF (IOUT8.NE.(0) WRITE(8,1003)TITLINE, ICURVE
IF {(IOUT9.NE.0) WRITE(S,1073)TITLINE, ICURVE
READ (7,1003)TITLINE, ISYMM

IF (IOUT8.NE.(0) WRITE(8,1003)TITLINE, ISYMM
IF (IOUT9.NE.0) WRITE(S9,1073)TITLINE, ISYMM
READ (7,1003)TITLINE, ISSTEMP

IF (IOUT8.NE.0) WRITE(8,1003)TITLINE, ISSTEMP
IF (IOUTS.NE.O) WRITE(9,1073)TITLINE, ISSTEMP

READ(7,1070)TITF, TITF2

READ (7,1005) TITLINE, CANG

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE,CANG

IF (IOUT9.NE.(0) WRITE(9,1074)TITLINE,CANG
READ (7,1005)TITLINE,BO

IF (IOUT8.NE.O) WRITE(8,1003)TITLINE,BO

IF (IOUT9.NE.O) WRITE(9,1074)}TITLINE, BO
READ (7,1005)TITLINE,CA

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE,CA

IF (IOUT9.NE.(0) WRITE(9,1074)TITLINE,CA
READ (7,1005)TITLINE,MAIN

IF (IOUT8.NE.(Q) WRITE(8,1005)TITLINE,MAIN

IF (IOUT9.NE.QO) WRITE(S,1074)TITLINE,MAIN
READ (7,1005)TITLINE, RVOLSURF

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE, RVOLSURF
IF (IOUTY9.NE.(0) WRITE(9,1074)TITLINE, RVOLSURF
READ (7,1005)TITLINE, PR

IF (ICUT8.NE.O) WRITE(8,1005)TITLINE, PR

IF (IOUT9.NE.(0) WRITE(9,1074)TITLINE, PR
READ (7,1005)TITLINE, REVAPIN

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE, REVAPIN
IF (IOUT9.NE.0) WRITE(9,1074)TITLINE,REVAPIN
READ (7,1005)TITLINE,CR

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE,CR

IF (IOUT9.NE.0) WRITE(S9,1074)TITLINE,CR
READ (7,1005)TITLINE,FRHO

IF (IOUT8.NE.Q) WRITE(8,1005)TITLINE, FRHO

IF (IOUTS.NE.QO) WRITE(9,1074)TITLINE, FRHO
READ (7,1005)TITLINE, LHS

IF {(IOUT8.NE.0O) WRITE(8,1005)TITLINE,LHS

IF (IOUTY9.NE.0) WRITE(9,1074)TITLINE, LHS
READ (7,1005)TITLINE,BI

IF (ICUT8.NE.QO) WRITE(8,1005)TITLINE,BI

IF (IOUT9.NE.O) WRITE(9,1074)TITLINE,BI

READ (7,1005)TITLINE, PCORNER

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE, PCORNER
IF (IOUT9.NE.(0) WRITE(S,1074)TITLINE, PCORNER
READ (7,1005)TITLINE, TINIT

IF (IOUT8.NE.(0) WRITE(8,1005)TITLINE, TINIT
IF (IOUT9.NE.O) WRITE(9,1074)TITLINE, TINIT
READ (7,1005)TITLINE, RASPECT

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE, RASPECT
IF {(IOUT9.NE.Q) WRITE(9,1074)TITLINE, RASPECT

READ(7,1070) TITF, TITF2

READ (7,1005)TITLINE,VTOL

IF (IOUT8.NE.(0) WRITE(8,1005)TITLINE, VTOL
IF (IOUTY.NE.Q) WRITE(9,1074)TITLINE, VTOL
READ (7,1005)TITLINE, PTOL



IF (IOUT8.NE.(0) WRITE(8,1005)TITLINE, PTOL

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE, PTOL
READ (7,1005)TITLINE,TTOL

IF (IQUT8.NE.(0) WRITE(8,1005)TITLINE,TTOL

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE, TTOL
READ (7,1005)TITLINE, SSTOL

IF (IOUT8.NE.O0) WRITE(8,1005)TITLINE, SSTOL
IF (IOUT9.NE.(0) WRITE(S,1074)TITLINE, SSTOL
READ (7,1005)TITLINE,MENTOL

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE, MENTOL
IF (IOUT9.NE.0) WRITE(9,1074)}TITLINE, MENTOL
READ (7,1005)TITLINE, DELTMAX

IF (IOUT8.NE.(0) WRITE(8,1005)TITLINE,DELTMAX
IF (IOCUT9.NE.Q) WRITE(9,1074)TITLINE, DELTMAX

READ(7,1070)} TITF, TITF2

READ (7,1003)TITLINE,NTSTEP

IF (IOUT8.NE.(0)} WRITE(8,1003)TITLINE,NTSTEP
IF (IOUT9.NE.0) WRITE(9,1073)TITLINE,NTSTEP

READ (7,1003)TITLINE, NXE

IF (IOUT8.NE.O) WRITE(8,1003)TITLINE,NXE

IF (IOUT9.NE.O) WRITE(9,1073)TITLINE,NXE

READ (7,1003)TITLINE,NSMALL(1)

IF (IOUT8.NE.0) WRITE(8,1003)TITLINE,NSMALL(1)
IF (IOUT9.NE.O) WRITE(9,1073)TITLINE,NSMALL (1)
READ (7,1005)TITLINE, FSCALE(1)

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE,FSCALE(1)
IF (IOUT9.NE.0) WRITE(9,1074)TITLINE,FSCALE(1)

READ (7,1003)TITLINE,NYE

IF (IOUT8.NE.(Q) WRITE(8,1003)TITLINE,NYE

IF (IOUT9.NE.Q) WRITE(9,1073)TITLINE,NYE

READ (7,1003)TITLINE,NSMALL(2)

IF (IOUT8.NE.Q) WRITE(8,1003)TITLINE, NSMALL(Z2)
IF (IOUT9.NE.0)} WRITE(9,1073)TITLINE,NSMALL(2)
READ (7,1005)TITLINE,FSCALE(2)

IF (IOUT8.NE.0) WRITE{8,1005)TITLINE,FSCALE(2)
IF (IOUTY9.NE.(0) WRITE(9,1074)TITLINE,FSCALE(2)

READ (7,1003)TITLINE, NPOINT

IF (IOUT8.NE.(0} WRITE(8,1003)TITLINE, NPOINT
IF (IOUT9.NE.(0)} WRITE(9,1073)TITLINE,NPOINT
READ (7,1003)TITLINE,NINT

IF (IOUT8.NE.O) WRITE(8,1003)TITLINE,NINT
IF (IOUT9.NE.0) WRITE(9,1073)TITLINE,NINT
READ (7,1003)TITLINE,NMA

IF (IOUT8.NE.0) WRITE(8,1003)TITLINE, NMA

IF (IOUTY9.NE.O) WRITE(S,1073)TITLINE, NMA
READ (7,1003)TITLINE,NREVAP

IF (IOUT8.NE.0Q) WRITE(8,1003)TITLINE,NREVAP
IF (IOUT9.NE.0) WRITE(9,1073)TITLINE, NREVAP

READ(7,1070)TITF, TITF2

DO 1 N=1,6

READ (7,1071)TITLINE, (PNODE((N-1)*6+K),K= 1,6)

IF (IOUT8.NE.0) WRITE(8,1071)TITLINE, (PNODE((N-1)*6+K),K= 1,6)
1 CONTINUE
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IF (IOUTS.GT.0) THEN
WRITE({9,1072)
DO 2 1=1,3
READ(7,1003) TITLINE, NCONTOUR
WRITE(9,1073)TITLINE, NCONTOUR
2 CONTINUE
DO 3 1=1,3
READ(7, 1005} TITLINE, XARROW
WRITE(9,1074)TITLINE, XARROW
3 CONTINUE
TITLINE=' Number of top nodes
WRITE(9,1073) TITLINE, 2*NXE+1
TITLINE=' Number of global nodes
WRITE(9,1073)TITLINE, (2*NXE+1) * (2*NYE+1)

END IF
FT0= 1.-TPARAM ! Temporal param factor (prev time step)
FT1l= TPARAM ! Temporal param factor (current time step)

RA= BO*MAIN*RVOLSURF ! Rayleigh number
IF (MAIN.NE.O.) CA= CR*PR/MAIN
VREC= CA* (FRHO-1.)/REVAPIN/REVAPIN

IF (IPRESS.EQ.0) THEN
NINS= 4
NLNC= 4

ELSE IF (IPRESS.EQ.1) THEN
NINS= 6
NLNC= 9

END IF

IF (ITYPE.EQ.Q) THEN
TVAP= 0.

ELSE IF (ITYPE.EQ.1l) THEN
TVAP= 1.

END IF

C Marangoni and evap resistance step value

DELMA= MAIN/REAL{NMA)
DELRINV= 1./REVAPIN/REAL (NREVAP)

C Double precision representations of thermophysical parameters-input
C for meniscus calculation

DCANG= DBLE (CANG)

DBO= DBLE(BO)

DCA= DBLE(CA)

DMA= DBLE (MAIN)

DPR= DBLE(PR)

DBI= DBLE(BI)

DREVAP= DBLE (REVAPIN)
DRASPECT= DBLE (RASPECT)
DYREF= DBLE (RASPECT)
DCR= DBLE(CR)

DFRHO= DBLE (FRHO)
DVREC= DBLE({VREC) ] -

C Number of nodes, elements and velocity values
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NXP= 2*NXE+1l ! # global nodes in Xl-direction

NYP= 2*NYE+1 ! # global nodes in X2-direction

NGNODE= NXP*NYP ! # global nodes (quad var)

NELEMENT= NXE*NYE ! # elements

NROW= 2*NXP ! # global nodes in X1 row of elements

NCOL= 2*NYP ! # global nodes in X2 col of elements
#

NVEL= 2*NGNODE ! velocity values
NGNODE2= NGNODE+4*NYP+2*NXP+8 ! # nodes (4th-order var)

C Initial reference for surface geometry and conditions

DO 4 K= 1,NXP
PSURF (K)= 0.
PBUB(K)= 0.
TSURF (K) = TVAP
YSURFO (K) = DRASPECT
4 CONTINUE

C Variable grid geometry control
CALL GEOM2 (NXE,NYE,NXP,NROW,NSMALL, RASPECT, FSCALE)
C Static, isothermal meniscus geometry (T= 0)

CALL MENISCUS({DCANG,DBO,DCA,DMA, DPR,DBI, DREVAP, DPREF, DRASPECT,
> DPVAP, DYREF, DCR, DFRHO, DVREC, NINT, NXP, ISYMM, ICURVE, ITYPE,
> IPRESS)

PREF= REAL (DPREF)

IF (IMODE.EQ.1) THEN
WRITE(6,1073) ' STATIC MENISCUS GEOMETRY',O
WRITE(6,1007) 0
END IF
DO 5 K= 1,NXP
IF (IMODE.EQ.1) WRITE(6,1008)K,XSURF (K),YSURF (K),
> SURFNN({K, 1), SURFNN (K, 2) , SURFNT (K, 1) , SURFNT (K, 2)
YSTAT (K) = YSURF (K)
YSURFO0 (K) = YSURF (K)
5 CONTINUE

IF (ISSTEMP.EQ.1) THEN

CALL GEOM (NXP,NYP,NXE, NYE, NGNODE, NELEMENT , NCORNER , NROW, NCOL,
> IPRESS, NGNODE2, RASPECT, DXE, DYE, DXN, DYN, DXMIN, DYMIN, VOL)

CALL TENSCAL (NELEMENT, NLNQ, NLNL, NPOINT, IPRESS, PR, PVAP}

DO 10 NG= 1,NGNODE2

IF (IDIRICH(NG).EQ.0O) THEN
PREV(NG,1)= 1,-TVAP

ELSE
TEMP(NG)= 1.-TVAP
PREV{NG, 1} = TEMP (NG}

END IF

10 CONTINUE

DO 20 ITTEMP= 1,1000000
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DO 11 NG= 1,NGNODE2
IF (IDIRICH(NG).EQ.1l) GOTO 11
AMATO= 0.
BVECO= 0.

DO 14 NNE= 1,NCE(NG)

NE= CE(NG,NNE)
IF (ECL(NE,1l).EQ.0) THEN
NP= NLNQ
ELSE IF (ECL(NE,1l).EQ.1l) THEN
NP= 15
ELSE IF (ECL(NE,1l).EQ.2) THEN
NP= 25
END IF
DO 12 N= 1,NP
IF (ECL(NE,1).EQ.0) THEN
IF (CQ(NE,N).EQ.NG) GOTO 13
ELSE IF (ECL(NE,1).EQ.l) THEN
IF (C24(ECL(NE,2),N).EQ.NG} GOTO 13
ELSE IF (ECL(NE,1).EQ.2) THEN
IF (C44 (ECL{NE,2),N).EQ.NG) GOTO 13

END IF
12 CONTINUE
STOP
13 CONTINUE

DO 14 M= 1,NP
IF (ECL(NE,1).EQ.0) THEN
IF (MG.EQ.NG) THEN
AMAT0O= AMATO+EC (NE,N,M) /PR
ELSE
BVECO= BVECO0-EC(NE,N,M)/PR*PREV (MG, 1)
END IF
ELSE IF (ECL(NE,1).EQ.1) THEN
MG= C24 (ECL(NE, 2) ,M)
IF (MG.EQ.NG) THEN
AMAT0= AMAT0+EC24 (ECL(NE,2),N,M)/PR
ELSE
BVECO= BVEC0O-EC24 (ECL(NE,2),N,M)/PR*PREV (MG, 1)
END IF
ELSE IF (ECL(NE,1).EQ.2) THEN
MG= C44 (ECL(NE, 2),M)
IF (MG.EQ.NG) THEN
AMAT0O= AMAT0+EC44 (ECL{NE,2),N,M)/PR
ELSE
BVECO= BVEC(0-EC44 (ECL(NE, 2),N,M)/PR*PREV (MG, 1)
END IF
END IF
14 CONTINUE

C TEMPERATURE BOUNDARY CONDITIONS
C MIXED TEMPERATURE BC FOR SURFACE 4

IF ((NG.LE.NXP).OR. {(NG.GE.NGNODE+1.AND.NG.LE.NGNODE+4)) THEN
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18
19

16

17

15

IF (NG.LE.NXP) THEN
NP= NCES(NG)

ELSE
NP= 1

END IF

DO 15 NNE= 1,NP

IF (NG.LE.NXP) THEN

NE= CES(NG,NNE)

ELSE IF (NG.LE.NGNODE+2) THEN
NE= 1

ELSE
NE= NESURF (4)

END IF

IF (NE.EQ.1.0OR.NE.EQ.NESURF(4)) THEN
DO 18 N= 1,5
IF (C44(ECL(NE,?2),14-N).EQ.NG) GOTO 19
STOP
CONTINUE
DCOEFF= -1.*BI/PR*SURFL{4,NE)/5670.
NM= 5
IF (ITYPE.EQ.1)
BVECO= BVECO+BI/PR*SURFL(4,NE)*SC2(N)/90.
ELSE
DO 16 N= 1,3
IF (CSURF{4,NE,N).EQ.NG} GOTO 17
STOP

CONTINUE
DCOEFF= -1.*BI/PR*SURFL(4,NE)}/30.
NM= 3

IF (ITYPE.EQ.1)
BVECO= BVECO0+BI/PR*SURFL (4,NE)*SC(N)/6.
END IF

DO 15 M= 1,NM
IF (NE.EQ.1.0R.NE.EQ.NESURF(4)) THEN
MG= C44 (ECL(NE,2),14-M)
IF (MG.NE.1l.AND.MG.NE.NXP) THEN
IF (MG.EQ.NG) THEN
AMATO= AMAT(O-DCOEFF*SB2 (N, M)
ELSE
BVECO= BVECO+DCOEFF*SB2 (N, M) *PREV (MG, 1)
END IF
END IF
ELSE
MG= CSURF{4,NE,M)
IF (MG.EQ.NG) THEN
AMATO= AMAT(Q-DCOEFF*SB(N,M)
ELSE
BVEC(0= BVECO+DCOEFF*SB (N, M) *PREV (MG, 1)
END IF
END IF
CONTINUE

END IF
TEMP (NG) = .3*(BVECO/AMATO-PREV (NG, 1) ) +PREV(NG, 1)
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11

9318

1083

CONTINUE

TOTV= 0.

VERR= 0.

DO 9318 NG= 1,NGNODE2

TOTV= TOTV+PREV(NG, 1) *PREV (NG, 1)
ERR= TEMP(NG)-PREV(NG, 1)

VERR= VERR+ERR*ERR

PREV (NG, 1)= TEMP(NG)

CONTINUE

IF (TOTV.NE.O.) THEN
FERR= SQRT (VERR/TOTV)
ELSE

FERR= 1.

END IF

IF (IMODE.EQ.1) THEN
WRITE(6,1083)FERR

FORMAT (' TEMP ERROR= ',E12.6)
WRITE(6,1025)
WRITE(6,1022) {(TEMP (PNODE (N) ) ,N=1,36)
END IF

C Intermittent update and continuation check

IF {(IMODE.EQ.2) THEN

IF (QUETYPE.EQ.'HUGEB') THEN
OPEN(UNIT:Z,FILE:'huge3.tst‘,STATUS:'OLD')
OPEN(UNIT=3,FILE='huge3.dat',STATUS:'UNKNOWN')

FI.SE IF (QUETYPE.EQ.'HUGE2') THEN
OPEN(UNIT:Z,FILE:'huge2.tst',STATUS:'OLD')
OPEN(UNIT=3,FILE='huge2.dat',STATUS:'UNKNOWN')

ELSE IF (QUETYPE.EQ.'LARGE4'} THEN
OPEN(UNIT:Z,FILE:'large4.tst',STATUS:'OLD‘)
OPEN(UNIT=3,FILE='large4.dat',STATUS:'UNKNOWN')

ELSE IF (QUETYPE.EQ.'LARGE3‘) THEN
OPEN(UNIT:Z,FILE:'1arge3.tst',STATUS:'OLD')
OPEN(UNIT=3,FILE='1arge3.dat',STATUS:'UNKNOWN')

ELSE IF (QUETYPE.EQ.'LARGE2') THEN
OPEN(UNIT:Z,FILE:'1arge2.tst',STATUS:'OLD')
OPEN(UNIT=3,FILE='largeZ.dat',STATUS='UNKNOWN‘)

ELSE
OPEN(UNIT=2,FILE='other.tst', STATUS='0OLD')
OPEN(UNIT=3,FILE=‘other.dat',STATUS:‘UNKNOWN')

END IF

READ(2,1003) TITLINE, IGO
CLOSE(2)

WRITE(3,3919) ITMEN, 1.

WRITE(3,1030) ITTEMP, TIME

WRITE (3, 6391)VSSCON, PSSCON, FERR
WRITE(3,1025)

WRITE (3, 1022) (TEMP(PNODE(N) ) ,N= 1,36)
CLOSE(3)



IF (IGO.EQ.(0) THEN
IF (QUETYPE.EQ.'HUGE3') THEN
OPEN{UNIT=2,FILE="'huge3.tst', STATUS="'UNKNOWN')
ELSE IF (QUETYPE.EQ.'HUGEZ2') THEN
OPEN (UNIT=2,FILE="'huge2.tst', STATUS="'UNKNOWN")
ELSE IF (QUETYPE.EQ.'LARGE4')} THEN
OPEN{UNIT=2,FILE='larged.tst', STATUS="'UNKNOWN' )
ELSE IF (QUETYPE.EQ.'LARGE3'} THEN
OPEN (UNIT=2,FILE="'large3.tst', STATUS="'UNKNOWN' )
ELSE IF (QUETYPE.EQ.'LARGEZ2') THEN
OPEN (UNIT=2,FILE="'large2.tst', STATUS="'UNKNOWN')
ELSE
OPEN (UNIT=2,FILE='other, tst', STATUS='UNKNOWN' )
END IF
WRITE(2,1003) TITLINE,1
CLOSE(2)
GOTO 503
END IF

END IF
IF (FERR.LE.TTOL) GOTO 30

20 CONTINUE
30 CONTINUE

DO 9319 NG= 1,NGNODE2
9319 TEMPO (NG)= TEMP (NG)

END IF

NB= NGNODE-NXP
DO 21 K= 1,NXP
IF (ISSTEMP.EQ.1) THEN
TSURF (K) = TEMP(K)
ELSE
TSURF (K)= DBLE(TINIT)
END IF
21 CONTINUE

C******************************************'k****************************

C MENISCUS GEOMETRY LOCP

C***********************************************************************

MA= 0.
RINV= 0.

DO 500 ITMEN= 1,100

CALL MENISCUS (DCANG, DBO,DCA,MA, DPR, DBI, DREVAP, DPREF, DRASPECT,
> DPVAP, DYREF, DCR, DFRHO, DVREC, NINT, NXP, ISYMM, ICURVE, ITYPE,
> IPRESS)

PREF= REAL (DPREF)

IF (IOUT8.GE.2) WRITE(8,1007) ITMEN
IF (IMODE.EQ.1) WRITE(6,1007) ITMEN
DO 501 K= 1,NXP
IF (IOUT8.GE.2) WRITE(8,1008)}K, XSURF (K}, YSURF (K},
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> SURFNN (K, 1) , SURFNN (K, 2) , SURFNT (K, 1) , SURFNT (K, 2)

IF (IMODE.EQ.1) WRITE(6,1008)K,XSURF (K), YSURF (K),

> SURFNN (K, 1) , SURFNN (K, 2) , SURFNT (K, 1) , SURFNT (K, 2)
501 CONTINUE

DSUM= 0.
YERR= 0.
DO 502 K= 1,NXP,2
DSUM= DSUM+YSURFQ (K) *YSURFO0 (K)
YERR= YERR+ (YSURF (K)-YSURFO (K) } * {(YSURF (K) -YSURFO (K) )
502 CONTINUE
YERR= DSQRT (YERR/DSUM)
IF (YERR.LE,MENTOL.AND.ITMEN.GT.1l) THEN
IF (IOUT9.EQ.l1l) THEN
TITLINE=' MENISCUS DIM CHARACTERISTICS'
WRITE(9,1073)TITLINE, 0
DO 603 K= 1,NXP
WRITE(9,1009)XSURF (K) , YSTAT (K) , YSURF (K) , SURFNN (K, 1) ,
> SURFNN(K, 2), SURFNT (K, 1} , SURFNT (K, 2)
603 CONTINUE
END IF
GOTO 503
END IF

DO 509 K= 1,NXP
509 YSURF(K)= .5% (YSURF (K)}+YSURFO0 (K))
DO 521 K= 1,NXP
IF (K.EQ.1l) THEN
KREF= 2
ELSE IF (K.EQ.NXP} THEN
KREF= NXP-1
ELSE
KREF= K
END IF
V1= YSURF (KREF-1)
V2= YSURF (KREF)
V3= YSURF (KREF+1)
X1= XSURF (KREF-1)
X2= XSURF (KREF)
X3= XSURF (KREF+1)
AC= ((VI-V2)/({X1-X2)-(V2-V3)/(X2-X3))/({X1-X3)
BC= (V1-V2)/(X1-X2)-AC*(X1+X2)
DER= 2,*AC*XSURF (K)+BC
SURFNT(K,1)= 1./DSQRT(DER**2+1.)
SURFNT (K, 2)= DER*SURFNT (K, 1)
SURFNN(K,1)= -1.*SURFNT(K,2)
SURFNN (K, 2)= SURFNT(K, 1)
YSURF0 (K) = YSURF (K)
521 CONTINUE

C***********************************************************************

C OVERALL DOMAIN GEOMETRY

C***********************************************************************

CALL GEOM (NXP,NYP,NXE, NYE, NGNODE, NELEMENT , NCORNER , NROW, NCOL,
> IPRESS, NGNODE2 , RASPECT, DXE, DYE, DXN, DYN, DXMIN, DYMIN, VOL)

C**********************************f************************************



C ELEMENT TENSORS

C*************;*********************************************************

CALL TENSCAL (NELEMENT, NLNQ, NLNL, NPOINT, IPRESS, PR, PVAP)

C***********************************************************************

C DEPENDENT VARIABLE INITTIALIZATION

C***********************************************************************

C Velocities and pressures. Set equal to zero at all points.

IFREEZE= 1

DELT= DELTMAX

TSSCON= 1.

DO 504 N= 1,NGNODE
PDYNO (N) = PCORNER
PDYN{N)}= PDYNO (N)
PSI(N)= 0.

DO 504 K= 1,2
VELO (N,K)= 0.
VEL(N, K)= VELO(N,K)
504 CONTINUE
IF (ISSTEMP.NE.l) THEN
DO 506 N= 1,NGNODE2
TEMPO (N) = TINIT
TEMP (N) = TEMPO (N)
506 CONTINUE
ELSE
DO 507 N= 1,NGNODE2
TEMPOQ (N)= TEMP(N)
507 CONTINUE
END IF

IF (IMODE.EQ.1) THEN
WRITE(6,1020)
WRITE(6,1021)
WRITE(6,1022) (VEL(PNODE(N),1),N= 1,36)
WRITE(6,1023)
WRITE(6,1022) (VEL(PNODE(N),2),N= 1,36)
WRITE(6,1024)
WRITE(6,1022) (PDYN(PNODE({N) ) ~-PDYN (NGNODE} ,N= 1, 36)
WRITE(6,1025)
WRITE(6,1022) {(TEMP(PNODE(N)),N= 1,36)

END IF

IF (IOUT8.GE.2)
WRITE(8,1020)
WRITE(8,1021)
WRITE(8,1022)
WRITE(8,1023)
WRITE(8,1022) (VEL(PNODE(N),2),N= 1,36)
WRITE(8,1024)
WRITE(8,1022) (PDYN(PNODE (N) } -PDYN (NGNODE) ,N= 1,36)
WRITE(8,1025)
WRITE(8,1022) (TEMP(PNODE(N)),N= 1,36)

END IF

THEN

(VEL(PNCDE(N),1) ,N= 1,36)

Chhhhkkhkhhkhkhhkhkhhdhhhkhhkhhh bk hk ko kA kA kA kA hkhkk ko khh ok ko kkkkkkkhhk kA hhkkkkhk ok
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C TIME INTERVAL/STEPPING LOOP

C***********************************************************************
C**************************'k********************************************

TIME= 0.

ICONV= 0

MA= 0.

RINV= 0.

ITCONV= 0

DO 900 ITIME= 1,NTSTEP

IF (ITIME.NE.2) THEN
IF (MA.LT.MAIN) THEN
MA= MA+DELMA
FI.SE IF {MA.GE.MAIN) THEN
MA= MAIN
END IF
IF (RINV.LT.1./REVAPIN) THEN
RINV= RINV+DELRINV
ELSE IF (1./REVAP,.GE.l./REVAPIN} THEN
RINV= 1./REVAPIN
END IF
REVAP= 1./RINV
END IF

IF (IMODE.EQ.1l} WRITE(6,1038)ITIME

O ek dekok ke ke ko ok ok kR R ek ek sk ek ok ok ok sk ok ek ok ek kR ok kR Rk ko Rk ok kK
CRdkdkok sk d R e AR ke Kk kR ek ek ek ok ok ko Rk ko Rk ok ok kR Rk kR K
C TEMPERATURE ITERATION/CONVERGENCE LOOP

Ok e ok ek ok kR kR ek Rk kR ek ke ok ok kR R kR ok kb kR kR Rk R Rk koK K
ook ok e sk ke ek e ko ok o ok ok ok ko sk e ok ok ok ok ok ok ok ok ok ok ok kK R Rk ok e

DO 100 ITTEMP= 1,10000

IF (IMODE.EQ.1l) WRITE(6,1042)ITTEMP
IF (ITIME.EQ.1.AND.ITTEMP.EQ.1) GOTO 101

C Volumetric flowrate through upper surface due to ev‘aboration

DXMIN= XG (NGNODE, 1} -XG (NGNCDE-1,1)
QFLOW= 0.
DO 102 NE= 1,NESURF (4)
SUM= 0.
IF (NE.EQ.1.OR.NE.EQ.NESURF(4)) THEN
NM= 5
ELSE
NM= 3
END IF
DO 103 N= 1,NM
IF (NM.EQ.5) THEN
IF (NE.EQ.1.AND.N.EQ.1l) GOTO 103
IF (NE.EQ.NESURF(4).AND.N.EQ.5) GOTO 103
SUM= SUM+SC2 (N) *TEMP (C44 (ECL(NE, 2),14-N})
ELSE IF (NM.EQ.3) THEN
IF {CSURF(4,NE,N).EQ.1)GCOTO 103
IF (CSURF(4,NE,N).EQ.NXP)GOTO 103
SUM= SUM+SC (N) *TEMP (CSURF (4,NE, N) )



END IF
103 CONTINUE
IF (NM.EQ.3) THEN
QFLOW= QFLOW+SURFL(4,NE)/6.*RINV*SUM
ELSE
QFLOW= QFLOW+SURFL(4,NE)/90.*RINV*SUM
END IF
IF (ITYPE.EQ.l) QFLOW= QFLOW-SURFL{4,NE)*RINV
102 CONTINUE
VELBOT= 3.*QFLOW/ (3.-DXMIN)

C***********************************************************************
C***********************************************************************
C PRESSURE CORRECTION ITERATION/CONVERGENCE LOOP

C***********************************************************************
C***********************************************************************

DO 200 ITPRESS= 1,1000

IF (IMODE.EQ.1) WRITE({6,1031)ITPRESS

C***********************************************************************
C***********************************************************************
C VELOCITY/PRESSURE ITERATION/CALCULATION LOOP

C***********************************************************************
C***********************************************************************

DO 300 ITVEL= 1,1000
IF (IMODE.EQ.1) WRITE(6,1032)ITVEL
C Time step check and adjustment

VIMAX= VEL(1,1)
V2MAX= VEL(1, 2}
DO 302 N= 1,NGNODE
IF (ABS(VEL(N,1)).GT.VIMAX) VIMAX= ABS(VEL(N, 1)}
IF (ABS(VEL(N,2)).GT.V2MAX) V2MAX= ABS{VEL(N,2))
DO 302 I= 1,2
PREV (N, I)= VEL({N, I)

302 CONTINUE )
IF (VIMAX.LE.1.0E-6.AND.V2MAX.LE.1.0E-6) GOTO 303
DELTLIM= 1./ {V2MAX/DYMIN+V1MAX/DXMIN}
IF (DELTLIM.LT.DELT) DELT= DELTLIM/10.
IF (IFREEZE.EQ.1) DELT= DELTLIM

303 CONTINUE
IF (IMODE.EQ.1)WRITE(6,3927)DELT

3927 FORMAT(' DELT= ',E12.6)

C X1 and X2 component velocities solved sequentially

DO 310 I= 1,2
DO 310 NG= 1,NGNODE

AMATO= 0.
BVECO= 0.

IF (NG.GE.2.AND.NG.LE.NXP-1.AND.I.EQ.2} THEN
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XN1= REAL (SURFNN (NG, 1))
XN2= REAL (SURFNN{NG, 2))
IF (ITYPE.EQ.0) THEN
FTEMP= TEMP(NG)
ELSE
FTEMP= TEMP(NG)-1.
END IF ,
VEL (NG, I)= (FTEMP*RINV-VEL (NG, 1) *XN1) /XN2
PREV(NG, I})= VEL(NG,I)
GOTO 310
END IF
IF (IDIRICH(NG).EQ.1l) THEN
IF (I.EQ.2) THEN
IF (NG.GE.NGNODE-NXP+2.AND.NG.LE.NGNODE-1) THEN
VEL (NG, I)= VELBOT
ELSE
VEL(NG,I)= 0.
END IF
ELSE
VEL(NG,I)= 0.
END IF
PREV (NG, I)= VEL(NG,I)
GOTO 310
END IF

C Summation of contributions from element to global domain

301
305

322
321

323

324

350

DO 320 NNE= 1,NCE(NG)

NE= CE(NG,NNE)

DO 301 N= 1,NLNQ

IF (CQ(NE,N).EQ.NG) GOTO 305
STOP

CONTINUE

VRESID= 0.
DO 321 M= 1,NLNQ
MNM1= O.
DO 322 GAM= 1,NLNQ
DO 322 J= 1,2
MNM1=MNM1+EB (NE, N, GAM, M, J} *VELO (CQ{NE, GAM) , J)
VRESID= VRESID+VELO (CQ(NE,M),I)*
* (EA(NE,N, M) -DELT*FT0* (MNM1+EC (NE,N,M) })

QTERM= 0.

DO 323 M= 1,NLNQ

DO 323 J=1,2

VAVG= FTO*VELO(CQ(NE,M),J)+FT1*PREV(CQ(NE,M),J)
QTERM= QTERM+EQ(NE,N,J,M, I)*VAVG

CONTINUE '

MN3= 0.
IF (ECL(NE,1).EQ.0) THEN
DO 324 M= 1,NLNL
MN3=MN3+ED{ECL(NE, 2) ,N, M, I) *PDYN(CL(ECL(NE, 2) ,M) )
ELSE IF (ECL(NE,1).EQ.1) THEN
DO 350 M= 1,NLNS

MN3=MN3+EDLQ{ECL(NE, 2) ,N,M, I} *PDYN(CLLQ (ECL(NE, 2} ,M})




C
C
C

ELSE IF (ECL(NE,1).EQ.2) THEN
DO 351 M= 1,NINC

351 MN3=MN3+EDQ{ECL(NE, 2),N,M, I)*PDYN(CIQ(ECL(NE, 2} ,M}))
END IF

MN4= 0.

IF (ECL(NE,1).EQ.0) THEN

DO 325 M= 1,9

TAVG= FTO*TEMPQ (CQ{(NE, M) )} +FT1*TEMP (CQ(NE,M))
325  MN4=MN4+ RA/PR*ACCEL(I)*EA(NE,N,M)*TAVG

ELSE IF (ECL(NE,1).EQ.1) THEN

DO 327 M= 1,15

TAVG= FTO*TEMPQ (C24 (ECL(NE, 2),M))+FT1*TEMP(C24 (ECL(NE, 2} ,M})
327 MN4=MN4+ RA/PR*ACCEL(I)*EA24V(ECL(NE,2),N,M)*TAVG

ELSE IF (ECL(NE,1l).EQ.2) THEN

DO 328 M= 1,25

TAVG= FTO*TEMPO (C44 (ECL(NE, 2) ,M) ) +FT1*TEMP (C44 (ECL(NE, 2),M))
328  MN4=MN4+ RA/PR*ACCEL(I)*EA44V(ECL(NE,2),N,M)*TAVG

END IF

BVECO= BVECO+VRESID- DELT* (QTERM+MN3-MN4)
DO 320 M= 1,NLNQ
MG= CQ(NE, M)

MNM1= 0.
DO 326 GAM= 1,NLNQ
DO 326 J= 1,2
326 MNM1=MNM1+EB(NE,N,GAM,M,J) *PREV (CQ (NE, GAM) , J)

IF (MG.EQ.NG) THEN

AMATO= AMATO+

* EA (NE,N,M) +FT1*DELT* (MNM1+EC (NE,N, M) )

ELSE

BVECO= BVECO- (EA(NE,N,M)+FT1*DELT* (MNM1+EC (NE,N,M) )} *
* PREV (MG, I)

END IF

320 CONTINUE

SURFACE 4 NEUMAN CONDITION FOR X1-COMPONENT VELOCITY
Marangoni effect applied on upper free surface, i.e., tangential
stress proportional to temperature gradient.

IF (NG.LE.NXP.AND.I.EQ.1l) THEN
DO 330 NNE= 1,NCES(NG)
NE= CES(NG,NNE)
DCOEFF= DELT*SURFL(4,NE)*MA/PR ! Vol tens form
IF (NE.EQ.1.OR.NE.EQ.NESURF(4)) THEN
DO 334 N= 1,5

334 IF {C44(ECL(NE,2),14-N).EQ.NG) GOTO 335
STOP
335 CONTINUE
SM= 0.
DO 336 M= 1,25
336 SM= SM+SAQ2 (ECL(NE, 2),N,M)} *TEMP (C44 (ECL(NE, 2) ,M))
ELSE
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DO 331 N= 1,3

331 IF (CSURF(4,NE,N).EQ.NG) GOTO 332
STOP
332 CONTINUE
SM= 0.
DO 333 M= 1,NLNQ
333 SM= SM+SAQ(NE,N, M) *TEMP (CQ(NE, M) )
END IF

BVEC(0= BVECO-DCOEFF*SM
330 CONTINUE
END IF

VEL (NG, I)= .5*{BVECO/AMATO-PREV (NG, I))+PREV (NG, I)
310 CONTINUE

VRMSTOT= 0.

VRMSERR= 0.

DO 340 NG= 1,NGNODE

DO 340 1= 1,2
VRMSTOT= VRMSTOT+PREV (NG, I} *PREV (NG, I)
ERR= VEL(NG, I)-PREV(NG, I)
VRMSERR= VRMSERR+ERR*ERR

PREV (NG, I)= VEL(NG, I)

340 CONTINUE

IF (VRMSTOT.NE.0.) THEN
FVRMS= SQRT (VRMSERR/VRMSTOT)
ELSE
FVRMS= 1.
END IF

IF (IMODE.EQ.1) THEN
WRITE({6,3941) FVRMS, ABS (FVRMS-FVRMS0)
WRITE(6,1021)
WRITE(6,1022) (VEL(PNODE(N),1) ,N= 1,36)
WRITE(6,1023)
WRITE{6,1022) {(VEL(PNODE(N},2),N= 1,36)

END IF

3941 FORMAT(' FVRMS= ',E12.6,' ABS(FVRMS-FVRMSO)= ', E12.6)

IF (ICONV.EQ.0) THEN

IF (FVRMS.LE.VTOL.OR.ABS (FVRMS-FVRMS0) .LE.VTOL/10.} GOTO 201
ELSE

IF (FVRMS.LE.VTOL) GCTO 201
END IF

FVRMSO= FVRMS
300 CONTINUE
IF (IQUT8.NE.0) WRITE(8,1033)

IF (IMODE.EQ.1l) WRITE(6,1033)
STOP

c***********************************************************************

C PRESSURE CORRECTION- Initial estimate

C***********************************************************************
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201 CONTINUE
IFREEZE= 0

DO 202 I= 1,NCORNER
BVEC(I)
XVEC (I)
DP(I)=
DO 202 J= 1,NCORNER
AMAT(I,J)= O.
202 CONTINUE

0.
0.

[ B | I |

.

DO 210 NE= 1,NELEMENT

IF (ECL(NE,1).EQ.0) THEN

NLN= 4

ELSE IF (ECL(NE,1).EQ.1) THEN
NLN= NLNS

ELSE IF (ECL(NE,1l).EQ.2} THEN
NLN= NLNC

END IF

DO 210 N= 1,NLN

IF (ECL(NE,1).EQ.0) THEN
NG= CNODE(CL(ECL(NE,2),N))
ELSE IF (ECL(NE,1).EQ.1) THEN
NG= CNODE (CLLQ(ECL{NE,2),N))
ELSE IF (ECL(NE,1l).EQ.2) THEN
NG= CNODE (CLQ(ECL(NE, 2) ,N))
END IF

P2N= 0.
DO 211 M= 1,NLNQ
DO 211 I=1,2
IF (ECL(NE,1l).EQ.0) THEN
P2N= P2N+EF (ECL(NE,2),N,M, I)*VEL(CQ(NE, M), I)
ELSE IF {(ECL(NE,1l).EQ.1l) THEN
P2N= P2N+EFLQ(ECL(NE,2)},N,M, I)*VEL(CQ(NE, M), I)
ELSE IF (ECL(NE,1).EQ.2) THEN
P2N= P2N+EFQ(ECL{NE,2),N,M, I)*VEL(CQ(NE,M),I)
END IF
211 CONTINUE
BVEC (NG) = BVEC (NG} -P2N/DELT

DO 210 M= 1,NLN

IF (ECL(NE,1).EQ.0) THEN

MG= CNODE (CL(ECL(NE,2),M))

AMAT (NG, MG)= AMAT (NG, MG) +EE (ECL(NE, 2} ,N,M)
ELSE IF (ECL(NE,1).EQ.1l) THEN

MG= CNODE (CLLQ(ECL(NE,2},M))

AMAT (NG, MG) = AMAT (NG, MG) +EELQ(ECL(NE, 2) ,N, M)
ELSE IF (ECL(NE,1l).EQ.2) THEN

MG= CNODE (CLQ(ECL(NE,2),M})

AMAT (NG, MG) = AMAT (NG, MG)+EEQ(ECL(NE,2),N, M)
END IF
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210 CONTINUE
C DIRICHLET BOUNDARY CONDITIONS

DO 220 KK= 1,2

IF (KK.EQ.1) N=1

IF (KK.EQ.2) N= CNODE (NXP)
BVEC(N)= 0.

DO 220 K= 1,NCORNER
IF (K.EQ.N) THEN
AMAT (N,K)= 1.

ELSE
AMAT(N,K)= 0.
END IF
220 CONTINUE

C MATRIX SOLUTION VIA GAUSS SUBSTITUTION
CALL GAUSS (NCORNER)

DO 222 N= 1,NCORNER
DP(N}= XVEC(N)
222 CCONTINUE

IF (IMODE.EQ.1) THEN

WRITE (6,5924) FPRMS, FPRMS

WRITE(6,1024)

WRITE (6, 1022) (DP(CNODE (PNODE (N} ) ) ,N=1, 36)
END IF

C***********************************************************************

C VELOCITY CORRECTION BASED ON PRESSURE CORRECTION

C Establishes new initial velocity values for next velocity iteration.
C***********************************************************************

207 CONTINUE
DO 231 ITV= 1,500
DO 232 NG= 1,NGNODE
DO 232 I= 1,2

232 PREV(NG, I)= DVEL(NG,I)

DO 230 1=1,2
DO 230 NG= 1,NGNODE

IF (IDIRICH(NG).EQ.1) GOTO 230
AMATO= 0.

BVECO= 0.

DO 240 NNE= 1,NCE(NG)

NE= CE(NG,NNE)
DO 244 N= 1,NLNQ

244 IF (CQ(NE,N).EQ.NG) GOTO 245
STOP
245 CONTINUE
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SM= 0.,
JF (ECL(NE,1).EQ.0) THEN
DO 241 M= 1,4
241 SM= SM+ED(ECL(NE, 2),N,M, I) *DP (CNODE (CL (ECL (NE, 2) ,M)) )
ELSE IF (ECL(NE,1l).EQ.1l) THEN
DO 242 M= 1,NLNS
242 SM= SM+EDLQ{(ECL{(NE,2),N,M, I)*DP(CNODE(CLILQ(ECL(NE, 2} ,M)})))
ELSE IF (ECL(NE,1l).EQ.2) THEN
DO 243 M= 1,NLNC
243 SM= SM+EDQ(ECL(NE, 2),N, M, I) *DP (CNODE (CLQ (ECL (NE, 2) , M) ) )
END IF
BVECO= BVECO- DELT*SM

DO 240 M= 1,NLNQ
MG= CQ(NE,M)
IF (MG.EQ.NG) THEN
AMATO= AMATO+ EA(NE,N,M)
ELSE
BVEC(O= BVECO- EA(NE,N,M}*PREV(MG, I)
END IF
240 CONTINUE

DVEL (NG, I)= .5*{BVEC0/AMAT(0-PREV (NG, I))+PREV (NG, I)
230 CONTINUE

VRMSTOT= 0.

VRMSERR= 0.

VRMSERR2= 0.

DC 233 NG= 1,NGNODE

DO 233 I= 1,2
VRMSTOT= VRMSTOT+VEL (NG, I)*VEL (NG, I)
VRMSERR= VRMSERR+DVEL (NG, I) *DVEL (NG, I)
VRMSERR2=VRMSERR2+PREV (NG, I) *PREV (NG, I)

233 CONTINUE

IF (VRMSERR2.NE.0.) THEN
FVRMS=ABS ( { SQRT (VRMSERR) -SQRT (VRMSERR2) ) /SQRT (VRMSERRZ2) )
ELSE
FVRMS= 1.
END IF

IF (IMODE.EQ.1) THEN
WRITE(6,3941)FVRMS, FVRMS
WRITE(6,1021)
WRITE(6,1022) (DVEL(PNODE(N),1),N= 1,36)
WRITE(6,1023)
WRITE(6,1022) (DVEL(PNODE(N),2),N= 1,36)
END IF

IF (FVRMS.LE.VTOL) GOTO 234

231 CONTINUE

C***********************************************************************

C PRESSURE CORRECTION-Last part of SIMPLER ALGORITHM

c***********************************************************************
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234 CONTINUE

DO 270 I= 1,NCORNER

BVEC(I)= 0.
XVEC(I)= 0.
DP(I)= O.

DO 270 J= 1,NCORNER
AMAT(I,J)= 0.
270 CONTINUE

DO 280 NE= 1,NELEMENT

IF (ECL(NE,1).EQ.0) THEN
NIN= 4

ELSE IF (ECL(NE,1l).EQ.l1) THEN
NIN= NLNS

ELSE IF (ECL(NE,1l).EQ.2) THEN
NIN= NLNC

END TIF

DO 280 N= 1:NI.|N

IF (ECL(NE,1l).EQ.0) THEN

NG= CNODE (CL(ECL(NE, 2),N})
ELSE IF (ECL{NE,1).EQ.1l} THEN
NG= CNODE (CLLQ(ECL(NE,2),N))
ELSE IF (ECL(NE,1).EQ.2)} THEN
NG= CNODE (CLQ (ECL(NE, 2) ,N))
END IF

SMI= 0.
DO 281 M= 1,NINQ
DO 281 I= 1,2
IF (ECL(NE,1l).EQ.0) THEN
SMI= SMI+ EF(ECL(NE,2),N,M, I)*VEL(CQ(NE,M), I}
ELSE IF (ECL(NE,1).EQ.l) THEN
SMI= SMI+ EFLQ(ECL(NE,2),N,M, I)*VEL(CQ(NE,M),I)
ELSE IF (ECL(NE,1).EQ.2) THEN
SMI= SMI+ EFQ(ECL(NE,2),N,M,I)*VEL(CQ(NE,M),I)
END IF
281 CONTINUE
BVEC (NG) = BVEC (NG)- SMI/DELT

SUM= 0.
DO 282 GAM= 1,NLNQ
DO 282 J= 1,2
SMI= 0.
DO 283 M= 1,NLNQ
DO 283 I=1,2
IF (ECL(NE,1).EQ.0) THEN
SMI= SMI+ EG(ECL(NE,2),N,M,J,GAM, I)*DVEL(CQ(NE,M),I)
ELSE IF (ECL(NE,1l).EQ.1) THEN
SMI= SMI+ EGLQ(ECL(NE,Z),N,M,J,GAM,I)*DVEL(CQ(NE,M),I)
ELSE IF (ECL{(NE,1l).EQ.2) THEN
SMI= SMI+ EGQ(ECL(NE,Z),N,M,J,GAM,I)*DVEL(CQ(NE,M),I)
END IF
283 CONTINUE
282 SUM= SUM+ SMI*(Z.*VEL(CQ(NE,GAM),J)+DVEL(CQ(NE,GAM),J))
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BVEC (NG} = BVEC(NG)+ SUM

SUM= 0.
DO 284 M= 1,NLNQ
DO 284 J= 1,2
SGI= 0.
DO 285 GAM= 1,NLNQ
DO 285 I= 1,2
IF (ECL(NE,1).EQ.0) THEN
SGI= SGI+ EH(ECL(NE,2),N,M,GAM, I,J)*DVEL(CQ(NE,GAM), I)
ELSE IF (ECL(NE,1).EQ.1) THEN
SGI= SGI+ EHLQ(ECL(NE,2),N,M,GAM,I,J)*DVEL(CQ(NE,GAM), I)
ELSE TF (ECL(NE,1).EQ.2) THEN
SGI= SGI+ EHQ(ECL(NE,2),N,M,GaM, I,J)*DVEL(CQ(NE,GAM}, I)
END IF
285 CONTINUE
284 SUM= SUM+ SGI*VEL(CQ(NE,M),J)
BVEC (NG)= BVEC(NG)+ SUM

DO 280 M= 1,NLN

IF (ECL(NE,1).EQ.0) THEN

MG= CNODE(CL(ECL(NE,2),M})

AMAT (NG, MG)= AMAT (NG, MG)+EE{ECL(NE,2} ,N, M)
ELSE IF (ECL(NE,1).EQ.1l) THEN

MG= CNODE (CLLQ (ECL(NE,2) ,M)})

AMAT (NG, MG)= AMAT (NG, MG)+EELQ{ECL(NE, 2) ,N, M)
ELSE IF (ECL(NE,1).EQ.2) THEN

MG= CNODE (CLQ(ECL(NE,2),M))

AMAT (NG, MG)= AMAT (NG, MG)+EEQ(ECL(NE, 2),N,M)
END IF

280 CONTINUE
C Pressure Correction Dirichlet Condition

DO 290 KRK= 1,2

IF (KK.EQ.1) N= 1

IF (KK.EQ.2) N= CNODE (NXP)
BVEC(N)= 0.

DO 290 K= 1,NCORNER
IF (K.EQ.N} THEN
AMAT(N,K)= 1.

ELSE
AMAT (N,K)= 0.
END IF
290 CONTINUE

C MATRIX SOLUTION VIA GAUSS SUBSTITUTION
CALL GAUSS (NCORNER)

C Error and convergence tolerance calculation
PRMSERR= 0.
PRMSTOT= 0

DO 292 N= 1,NCORNER
PRMSTOT= PRMSTOT+ ( PDYN (GNODE (N) ) -PDYN (NGNODE) ) *
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176

292

293

5924

5925

200

101

104

> ( PDYN {GNODE (N) ) -PDYN (NGNODE) )
PRMSERR= PRMSERR+XVEC (N) *XVEC (N)

PDYN (GNODE (N) ) = PDYN (GNODE (N) ) +XVEC (N)
CONTINUE

VRMSERR= 0.

VRMSTOT= 0.

DO 283 N= 1,NGNODE

DO 293 1= 1,2
VRMSERR= VRMSERR+DVEL (N, I) *DVEL(N, I)
VRMSTOT= VRMSTOT+VEL (N, I)*VEL(N, I}
VEL(N, I)= DVEL(N, I)+VEL(N, I)

CONTINUE

IF (VRMSTOT.NE.(Q.) THEN
FVRMS2= SQRT (VRMSERR/VRMSTOT)
ELSE
FVRMS2= 1.
END IF

IF (PRMSTOT.NE.QO.) THEN
FPRMS= SQRT { PRMSERR/PRMSTCT)
ELSE
FPRMS= 1.
END IF

IF (IMODE.EQ.1) WRITE(6,5924)FPRMS, ABS (FPRMS-FPRMSO)
FORMAT (' FPRMS= ',El12.6,' ABS(FPRMS-FPRMSO)= ', E12.6)
IF (IMODE.EQ.1) WRITE(6,5925)FVRMS2,ABS(FVRMS2-FVRMS20)
FORMAT (' FVRMS2= ',E12.6,' ABS(FVRMS2-FVRMS20)= ',E12.6)

IF (FPRMS.LE.PTOL.OR.ABS (FPRMS-FPRMS0) .LE.PTOL) GOTO 101
IF (FVRMS2.LE.VTOL) GOTO 101

FPRMS0= FPRMS

FVRMS20= FVRMS2

IF (IMODE.EQ.1l) THEN

WRITE(6,1024)

WRITE (6, 1022) (PDYN(PNODE (N) ) -PDYN (NGNODE) ,N= 1, 36)
END IF

CONTINUE
IF {IMODE.EQ.l) WRITE(6,1034)

IF (IOUT8.NE.0) WRITE(8,1034)
STOP

C***********************************************************************

C TEMPERATURE SOLUTION

C*******************************t***************************************

CONTINUE

DO 104 NG= 1,NGNODE2
PREV (NG, 1) = TEMP(NG)
PREV (NG, 2} = TEMP (NG)

DO 105 ITT= 1,1000



DO 106 NG= 1,NGNODE2

IF (IDIRICH(NG).EQ.1l) GOTO 106
AMATO= O.

BVECO= 0.

DO 110 NNE= 1,NCE(NG)

NE= CE{NG,NNE)
IF (ECL(NE,1).EQ.(0) THEN
NM= NLNQ
ELSE IF (ECL(NE,1).EQ.1) THEN
NM= 15
ELSE IF (ECL(NE,1).EQ.2) THEN
NM= 25
END IF
DC 108 N= 1,NM
IF (ECL(NE,1).EQ.0) THEN
IF (CQ{NE,N).EQ.NG) GOTO 109
ELSE IF (ECL(NE,1).EQ.1) THEN
IF (C24(ECL(NE,2),N).EQ.NG) GOTO 109
ELSE IF (ECL(NE,1l).EQ.2) THEN
IF (C44(ECL(NE,2),N).EQ.NG) GOTO 109
END IF
108 CONTINUE
STOP
109 CONTINUE

IF (ITIME.EQ.1.AND.ITTEMP.EQ.1.AND.ISSTEMP.EQ.1) THEN
IF (ITMEN.EQ.1} THEN
GOTO 114
ELSE
GOTO 9998
END IF
END IF

TRESID= 0.
DO 111 M= 1,NM
MNM1= 0.
IF (NM.EQ.9) THEN
DO 112 GAM= 1,NLNQ
DO 112 J= 1,2
112 MNM1=MNM1+EB (NE, N, GAM, M, J) *VELO (CQ (NE, GAM) , J)
TRESID= TRESID+TEMPO (CQ(NE,M))*
* (EA (NE, N, M) -DELT*FT0* (MNM1+EC (NE,N,M) /PR} )
FELSE IF (NM.EQ.15) THEN
DO 115 GaM= 1,NLNQ
Do 115 J= 1,2
115 MNM1-MNM1+EB24 (ECL(NE, 2) ,N, GAM, M, J) *VEL0 (CQ (NE, GAM) , J)
TRESID= TRESID+TEMPO (C24 (ECL(NE,2),M))}*
* (EA24T (ECL(NE, 2),N,M) -
* DELT*FTO* (MNM1+EC24 (ECL(NE, 2} ,N,M) /PR) )
ELSE
DO 116 GAM= 1,NLNQ
DO 116 J= 1,2

116 MNM1=MNM1+EB44 (ECL(NE, 2) ,N, GAM, M, J) *VELO (CQ (NE, GAM) , J)
TRESID= TRESID+TEMPO (C44 (ECL(NE,2),M))*
* (EA44T(ECL(NE, 2) ,N,M) -
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* DELT*FTO* (MNM1+EC44 (ECL(NE, 2) ,N,M} /PR})
END IF
111 CONTINUE

BVECO= BVECO+TRESID
114 CONTINUE
DO 110 M= 1'NM

MNM1= 0.
IF (NM.EQ.9) THEN
MG= CQ(NE, M)
DO 113 GAM= 1,NLNQ
DO 113 J= 1,2
113 MNM1=MNM1+EB(NE,N,GAM,M, J) *VEL{CQ(NE, GAM) , J)
ELSE IF (NM.EQ.15) THEN
MG= C24 (ECL{NE, 2),M)
DO 117 GAM= 1,NINQ
Do 117 J=1,2
117 MNM1=MNM1+EB24 (ECL(NE, 2) ,N,GAM, M, J} *VEL(CQ (NE, GAM) , J)
ELSE
MG= C44 (ECL(NE, 2) ,M)
DO 118 GAM= 1,NLNQ
DO 118 J= 1,2 .
118 MNM1-=MNM1+EB44 (ECL(NE, 2),N,GAM, M, J) *VEL (CQ (NE, GAM) , J}
END IF

IF (ITIME.EQ.1.AND.ITTEMP.EQ.1.AND.ISSTEMP.EQ.1) THEN
IF (NG.EQ.MG) THEN
IF (NM.EQ.9) THEN
AMATO= AMATO+EC (NE,N,M) /PR
ELSE IF (NM.EQ.15) THEN
AMAT(O= AMATO+EC24 (ECL(NE,2),N,M) /PR
ELSE
AMAT(O= AMATO0+EC44 (ECL(NE, 2} ,N,M) /PR
END IF
ELSE
IF (NM.EQ.9) THEN
BVECO= BVECO0-EC(NE,N,M)/PR*PREV{MG, 1)
ELSE IF (NM.EQ.15) THEN
BVECO= BVEC0-EC24 (ECL(NE, 2),N,M) /PR*PREV (MG, 1)
ELSE
BVEC(O= BVEC0-EC44 (ECL(NE, 2),N,M)/PR*PREV (MG, 1)
END IF
END IF
ELSE
IF (NG.EQ.MG)} THEN
IF (NM.EQ.%) THEN
AMAT(= AMATO+EA(NE,N,M)+
* FT1*DELT* (MNM1+EC (NE, N, M) /PR)
ELSE IF (NM.EQ.15) THEN
AMAT(O= AMATO+EA24T(ECL{NE,2),N,M)+
* FT1*DELT* (MNM1+EC24 (ECL(NE, 2} ,N, M) /PR)
ELSE
AMATO= AMATO+EA44T (ECL(NE, 2} ,N,M}+
* FT1*DELT* (MNM1+EC44 (ECL(NE, 2) ,N, M) /PR}
END IF
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ELSE
IF (NM.EQ.9) THEN
BVEC(O= BVECO-PREV (MG, 1)* (EA{NE,N,M)+
* FT1*DELT* (MNM1+EC (NE,N,M)} /PR) )
ELSE IF (NM.EQ.15) THEN
BVECO= BVECO-PREV(MG,1)* (EA24T{(ECL(NE,2) ,N,M)+
* FT1*DELT* (MNM1+EC24 (ECL(NE, 2) ,N,M} /PR) )
ELSE
BVECO= BVECO-PREV (MG, 1)* (EA44T (ECL(NE,2),N,M}+
* FT1*DELT* (MNM1+EC44 (ECL(NE, 2),N,M)/PR))
END IF
END IF
END IF

110 CONTINUE
C TEMPERATURE BOUNDARY CONDITIONS
C MIXED TEMPERATURE BC FOR SURFACE 4

IF ((NG.LE.NXP).OR. (NG.GE.NGNODE+l.AND.NG.LE.NGNODE+4)) THEN
IF (NG.LE.NXP) THEN
NP= NCES (NG)
ELSE
NP= 1
! END IF
DO 120 NNE= 1,NP
IF (NG.LE.NXP) THEN
NE= CES(NG,NNE)
ELSE IF (NG.LE.NGNODE+2) THEN
NE= 1
ELSE
NE= NESURF (4)
END IF
IF (NE.EQ.1.OR.NE.EQ.NESURF(4)) THEN
DO 124 N= 1,5

124 IF (C44(ECL(NE,2),14-N).EQ.NG) GOTO 125
STOP
125 CONTINUE

IF (ITIME.EQ.1.AND.ITTEMP.EQ.1.AND.ISSTEMP.EQ.1) THEN
DCOEFF= -1.*BI/PR*SURFL(4,NE)/5670.
DCOEFF2= DCOEFF
IF (ITYPE.EQ.1)
> BVECO0=BVEC0+BI/PR*SURFL(4,NE)}*SC2(N)/90.
ELSE
DCOEFF= -1.*BI/PR*SURFL(4,NE)/5670.*DELT*FT1
DCOEFF2= -1.*BI/PR*SURFL({4,NE)/5670.*DELT*FTO0
IF (ITYPE.EQ.1)
> BVEC0=BVEC0+BI/PR*SURFL(4,NE}*SC2 (N)/90.*DELT
END IF
CON= 0.
DO 126 M= 1,5
MG= C44 (ECL(NE, 2}, 14-M)
IF (MG.EQ.1.OR.MG.EQ.NXP} GOTO 126
CON= CON+DCOEFF2*SB2 (N, M} *TEMPO (MG)
IF (MG.EQ.NG) THEN
AMAT(O= AMATO-DCOEFF*SB2 (N, M)
ELSE
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BVECO= BVECO+DCOEFF*SB2 (N, M) *PREV (MG, 1)

END IF
126 CONTINUE
ELSE
DO 121 N= 1,3
121 IF (CSURF(4,NE,N).EQ.NG} GOTO 122
STOP
122 CONTINUE

IF (ITIME.EQ.1.AND.ITTEMP.EQ.1.AND.ISSTEMP.EQ.1) THEN
DCOEFF= -1.*BI/PR*SURFL(4,NE)/30
DCOEFF2= DCOEFF
IF (ITYPE.EQ.1)BVEC0=BVEC0+BI/PR*SURFL(4,NE)*SC(N)/6.
ELSE
DCOEFF= -1.*BI/PR*SURFL(4,NE)/30.*DELT*FT1
DCOEFF2= -1.*BI/PR*SURFL(4,NE)/30.*DELT*FT0
IF (ITYPE.EQ.1)BVEC0=BVEC0+BI/PR*SURFL(4,NE)*SC(N)/6.*DELT
END IF
CON= 0.
DO 123 M= 1,3
MG= CSURF (4,NE, M)
IF (MG.EQ.1.0R.MG.EQ.NXP) GOTO 123
CON= CON+DCOEFF2*SB (N, M) *TEMP0 (MG)
IF (MG.EQ.NG) THEN
AMATO= AMATO-DCOEFF*SB(N,M) i
ELSE :
BVECO= BVEC(Q+DCOEFF*SB(N,M) *PREV (MG, 1) :
END IF I
123 CONTINUE
END IF
IF (ITIME.NE.1.OR.ITTEMP.NE,1.0R.ISSTEMP.NE.1)
> BVEC(0= BVECO0+CON
120 CONTINUE
END IF

TEMP (NG)= .3* (BVECO/AMAT(Q-PREV (NG, 1) )+PREV(NG, 1)
106 CONTINUE

TOTV= 0.
VERR= 0.
DO 9215 NG= 1,NGNODE2
TOTV= TOTV+PREV (NG, 1) *PREV(NG, 1)
ERR= TEMP(NG)-PREV (NG, 1)
VERR= VERR+ERR*ERR
PREV (NG, 1)= TEMP(NG)
9215 CONTINUE

IF (TOTV.NE.(0.) THEN
SQRT (VERR/TOTV)

%

ELSE .
FERR= 1. -
END IF

IF (IMODE.EQ.1) THEN
WRITE(6,1080) FERR
WRITE(6,1022) (TEMP(PNODE(N)),N= 1,36)
END IF
1080 FORMAT{(' TEMP SOLUTION LOOP/ ERROR= ',El12.6)

. -
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IF (FERR.LE.TTOL) GOTO 119
105 CONTINUE
119 CONTINUE

TOTV= 0.
VERR= 0.
ERRAVG= 0.
ERRMIN= ABS(TEMP(2)-PREV(2,2))
ERRMAX= ERRMIN
DO 150 NG= 1,NGNODE2
TOTV= TOTV+PREV (NG, 2} *PREV (NG, 2)
ERR= TEMP (NG)-PREV (NG, 2)
IF (ERR.NE.O.} THEN

IF (ABS(ERR).LT.FRRMIN)ERRMIN= ABS{ERR)
IF (ABS(ERR).GT.FRRMAX)ERRMAX= ARS(ERR)

END IF
ERRAVG= ERRAVG+ ABS(ERR)
VERR= VERR+ERR*ERR
150 CONTINUE
ERRAVG= ERRAVG/REAL (NGNODE2 )

IF (TOTV.NE.O.) THEN
FERR= SQRT (VERR/TOTV)
ELSE
FERR= 1.
END IF

IF (IMODE.EQ.1) THEN

WRITE(6,1081) FERR

WRITE(6,1025)

WRITE(6,1022) (TEMP(PNCDE (N} ) ,N= 1,36)
END IF

1081 FORMAT(' TEMP/TIME STEP ERROR= ',El2.6)

IF (ITIME.EQ.1.AND.ITTEMP.EQ.1) THEN
IF (FERR.GT.TTOL) THEN
GOTO 101
ELSE
GOTO 9988
END IF
END IF

IF (FERR.LE.TTOL) GOTO 901
100 CONTINUE
IF (IOUT8.NE.O) WRITE(8,1043)

IF (IMODE.EQ.1) WRITE(6,1043)
STOP

C***************'k*******************************************************

C TIME STEP OUTPUT AND INITIALIZATION

C***********************************************************************

901 CONTINUE

TIME= TIME+DELT
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IF (IOUTB.GE.2) THEN
WRITE(8,1030)ITIME, TIME
WRITE(8,1021)
WRITE(8,1022) (VEL(PNODE(N),1),N= 1,36}
WRITE(8,1023)
WRITE(8,1022) (VEL(PNODE(N),2),N= 1,36}
WRITE(8,1024)
WRITE(8,1022) (PDYN{PNODE (N) ) -PDYN(NGNCDE) ,N= 1,36)
WRITE(8,1025)
WRITE(8,1022) (TEMP (PNODE(N) ) ,N= 1,36)
END IF
IF (IMODE.EQ.1)  THEN
WRITE(6,1030)ITIME, TIME
WRITE(6,1021)
WRITE(6,1022) (VEL(PNODE(N),1),N= 1,36)
WRITE(6,1023)
WRITE(6,1022) (VEL(PNODE(N),2),N= 1,36)
WRITE(6,1024)
WRITE(6,1022) (PDYN(PNODE(N) } -PDYN (NGNODE) ,N= 1,36)
WRITE(6,1025)
WRITE(6,1022) {(TEMP(PNODE(N) ) ,N= 1,36)
END IF

C Check steady-state convergence and initialize old values for
C next time step

9998

910

911

CONTINUE

TSSCON= 0.
PSSCON= 0.
VSSCON= 0.
TSUM= 0.
PSUM= 0.
VSUM= 0.
DO 910 I= 1,NGNODE
PSUM= PSUM+ { PDYNO (I)-PDYNO (NGNCDE) ) * (PDYNO (I} -PDYNO (NGNCDE) )
PSSCON= PSSCON+ (PDYN(I)-PDYNO (I))* (PDYN(I)-PDYNO(I))
PDYNO (I)= PDYN(I)
DO 910 J= 1,2

VSUM= VSUM+VELOQ(I,J)*VELO(I,J)

ERR= VEL{(I,J)-VELO(I,J)

VSSCON= VSSCON+ERR*ERR

VELO(I,J)= VEL(I,J)
CONTINUE
DO 911 I= 1,NGNODE2
TSUM= TSUM+TEMPO (I)*TEMPO(I)
TSSCON= TSSCON+ (TEMP(I)-TEMPO(I))* (TEMP(I)-TEMPO(I})
TEMPO (I)= TEMP(I)
CONTINUE
IF (TSUM.NE.0O.) THEN
TSSCON= SQRT (TSSCON/TSUM) i
ELSE e -
TSSCON= 1.
END IF
IF (PSUM.NE.0.) THEN .
PSSCON= SQRT (PSSCON/PSUM) :
ELSE :
PSSCON= 1.



END IF

IF (VSUM.NE.(O.) THEN
VSSCON= SQRT (VSSCON/VSUM)
ELSE

VSSCON= 1.

END IF

IF (IOUT8.GE.2) WRITE(8,1036) VSSCON, PSSCON, TSSCON
IF (IMODE.EQ.1l) WRITE(6,1036) VSSCON, PSSCON, TSSCON

IF (MA.GE.MAIN.AND.RINV.GE.1l./REVAPIN) THEN
IF (TSSCON.LE.SSTOL.AND.ITIME.GE.5} ICONV= 1
IF (ITMEN.EQ.1) THEN
IF (TSSCON.LE.SSTOL.AND.ITIME.GE.200) ITCONV= 1
ELSE
IF (TSSCON.LE.SSTOL.AND.ITIME.GE.30) ITCONV= 1
END IF
END IF

C Intermittent update and continuation check

IF (IMODE.EQ.Z2) THEN

IF (QUETYPE.EQ.'HUGE3') THEN
OPEN (UNIT=2,FILE='huge3.tst',6K STATUS='COLD')
OPEN (UNIT=3,FILE='huge3.dat ', STATUS="'UNKNOWN" )
OPEN (UNIT=1,FILE="'huge3.ts2', STATUS="'UNKNOWN")
ELSE IF (QUETYPE.EQ.'HUGEZ2')} THEN
OPEN (UNIT=2,FILE="'huge2.tst', STATUS='0OLD')
OPEN(UNIT=3,FILE='huge2.dat', STATUS="'UNKNOWN')
OPEN(UNIT=1,FILE="'huge2.ts2', STATUS='UNKNOWN')
ELSE IF (QUETYPE.EQ.'LARGE4'} THEN .
OPEN(UNIT=2,FILE='larged.tst', STATUS='0OLD')}
OPEN (UNIT=3,FILE="'large4d.dat',6 STATUS="'UNKNOWN' }
OPEN(UNIT=1,FILE="'larged4.ts2', STATUS="'UNKNOWN" )
ELSE IF (QUETYPE.EQ.'LARGE3') THEN
OPEN(UNIT=2,FILE="'large3.tst', STATUS='0OLD')
OPEN(UNIT=3,FILE='large3.dat', STATUS="'UNKNOWN')
OPEN (UNIT=1,FILE="'largel.ts2',6 STATUS="'UNKNOWN" )
ELSE IF (QUETYPE.EQ.'LARGE2') THEN
OPEN (UNIT=2,FILE='large2.tst', STATUS="'0OLD"')
OPEN (UNIT=3,FILE="'large2.dat ', STATUS="'UNKNOWN' )
OPEN (UNIT=1,FILE="'largeZ.ts2', STATUS="'UNKNOWN" }
ELSE
OPEN (UNIT=2,FILE="'other.tst', STATUS="'0OLD"')
OPEN{UNIT=3,FILE="'other.dat',6 STATUS="'UNKNOWN')
OPEN{(UNIT=1,FILE='other.ts2"', STATUS="'UNKNOWN' )
END TF

READ(2,1003) TITLINE, IGO
CLOSE(2)

WRITE(3,3919) ITMEN, YERR
WRITE(3,1030)ITIME, TIME
WRITE(3,6391)VSSCON, PSSCON, TSSCON
WRITE(3,7391) ERRAVG
WRITE(3, 7392)ERRMIN
WRITE(3, 7393 )ERRMAX
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7391 FORMAT (' ERRAVG= ',El2.6)

7392 FORMAT (' ERRMIN= ',El2.6)

7393 FORMAT(' ERRMAX= ',El12.6)
WRITE(3,1021)
WRITE(3,1023}
WRITE(3,1022) (VEL(PNODE(N),2),N= 1,36)
WRITE(3,1024)
WRITE(3,1022) (PDYN (PNODE (N) ) -PDYN (NGNODE) ,N= 1,36)
WRITE(3,1025)
WRITE(3,1022) (TEMP{PNODE(N)),N= 1,36)
CLOSE(3)

IF (IGO.EQ.0) THEN
IF (QUETYPE.EQ.'HUGE3') THEN
OPEN (UNIT=2,FILE="'huge3.tst',6 STATUS="'UNKNOWN')
ELSE IF (QUETYPE.EQ.'HUGE2') THEN
OPEN (UNIT=2,FILE="'huge2.tst"', STATUS="'UNKNOWN")
ELSE IF (QUETYPE.EQ.'LARGE4') THEN
OPEN (UNIT=2,FILE="'larged.tst', STATUS="'UNKNOWN')
ELSE IF (QUETYPE.EQ.'LARGE3') THEN
OPEN (UNIT=2,FILE="'large3.tst', STATUS="'UNKNOWN')
ELSE IF (QUETYPE.EQ.'LARGE2') THEN
OPEN(UNIT=2,FILE="'large2.tst', STATUS="'UNKNOWN')
ELSE
OPEN (UNIT=2,FILE="'other.tst’, STATUS="'UNKNOWN')
END IF
WRITE(2,1003) TITLINE,1
CLOSE(2)
IF (IOUT9.EQ.1l) THEN
TITLINE=' MENISCUS DIM CHARACTERISTICS'
WRITE(9,1073) TITLINE,O
DO 931 K= 1,NXP
WRITE(9,1009) XSURF (K),YSTAT(K),YSURF(K),
> SURFNN (K, 1) , SURFNN (K, 2) , SURFNT (K, 1} , SURFNT (K, 2)
931 CONTINUE
END IF
GOTO 510
END IF

READ(1,1003) TITLINE, ICHK
CLOSE(1)
IF (ITCONV.EQ.1) ICHK= 1 ! Full data dump to Ul0 when t conv
IF (ICHK.EQ.1l) THEN
IF (QUETYPE.EQ.'HUGEB') THEN
OPEN(UNIT:l,FILE:'huge3.t52',STATUS:'UNKNOWN')
OPEN(UNIT:lO,FILE:'Chg3.dat‘,STATUS:'UNKNOWN')
ELSE IF (QUETYPE.EQ.'HUGE2') THEN
OPEN(UNIT:l,FILE:'hugeZ.tsZ',STATUS:'UNKNOWN')
OPEN(UNIT:lO,FILE:'Chg2.dat',STATUS:'UNKNOWN')
ELSE IF (QUETYPE.EQ.'LARGE4') THEN
OPEN(UNIT:l,FILE:'large4.t52',STATUS:'UNKNOWN')
OPEN(UNIT:lO,FILE:'Clrg4.dat‘,STATUS:'UNKNOWN')
ELSE IF (QUETYPE.EQ.'LARGE3') THEN
OPEN(UNIT:l,FILE:'1arge3.tsZ',STATUS:'UNKNOWN')
OPEN(UNIT:lO,FILE:'Clrg3.dat',STATUS:'UNKNOWN')
ELSE IF (QUETYPE.EQ.'LARGEZ') THEN
OPEN(UNIT:I,FILE:'largeZ.tSZ',STATUS:'UNKNOWN')
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OPEN (UNIT=10,FILE='clrg2.dat', STATUS="UNKNOWN" )}
ELSE °
OPEN(UNIT=1,FILE='cther.ts2', STATUS="'UNKNOWN')
OPEN(UNIT=10,FILE="'coth.dat', STATUS="'UNKNOWN")
END IF
WRITE(1,1003)TITLINE, O
CLOSE (1)
WRITE(10,8294)QUETYPE
8294 FORMAT(Al2,28X,',',19X%,'0")
WRITE(10,8295)ITMEN
WRITE(10,8296)ITIME
WRITE(10,8297)VSSCON
WRITE(10,8298)PSSCON
WRITE(10,8299)TSSCON
8295 FORMAT ('Meniscus Iteration ', I20)
8296 FORMAT('Time Step , ', I20)
8297 FORMAT('Velocity Error , ', 1PE20.4)
8298 FORMAT('Press Error . ', 1PE20.4)
8299 FORMAT ('Temperature Error/SS Conv Test . ", 1PE20.4)
WRITE(10,1072)
DO 8301 1=1,3

8301 WRITE(10,1073) TITLINE, NCONTOUR
DO 8302 I=1,3
8302 WRITE(10,1074)TITLINE, XARROW

TITLINE=' Number of top nodes '
WRITE(10,1073)TITLINE, 2*NXE+1
TITLINE=' Number of global nodes '
WRITE(10,1073)TITLINE, (2*NXE+1) * (2*NYE+1)
TITLINE=' MENISCUS DIM CHARACTERISTICS'
WRITE(10,1073)TITLINE, O
DO 8341 K= 1,NXP
WRITE (10, 1009)XSURF (K),YSTAT (K) , YSURF (K) , SURFNN(K, 1},
> SURFNN(K, 2}, SURFNT (K, 1) , SURFNT (K, 2}
8341 CONTINUE
TITLINE= ' MOST RECENT TIME INTERVAL'
WRITE(10,1079)TITLINE, DELT
WRITE(10,6295)
CALL STREAM{(NGNODE, NXP,NYE+1, 2*NXP}
DO 8342 NG= 1,NGNODE
IF (NG.LE.NXP) THEN
WRITE{10, 6297)NG, XG (NG, 1),XG(NG, 2),VEL(NG, 1) ,VEL(NG, 2),
> TEMP(NG) , PBUB(NG) , PSI {(NG) , PDYN(NG) -PDYN (NGNODE}
ELSE
WRITE (10, 6297)NG, XG (NG, 1) ,XG(NG, 2} ,VEL(NG, 1) , VEL(NG, 2) ,
> TEMP (NG) , PTOT, PSI(NG) , PDYN(NG) ~PDYN (NGNODE)
END IF
8342 CONTINUE
CLOSE(10)

END IF
END TIF
IF (ITCONV.EQ.1) GOTO 510
900 CONTINUE

IF (IOUT8.GE.1) WRITE(8,1039)
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IF (IMODE.EQ.1l} WRITE(6,1039)
STOP

C***********************************************************************

C RE-INITIALIZATION FOR MENISCUS CALCULATION

C***********************************************************************

510 CONTINUE

CALL STREAM (NGNODE, NXP,NYE+1, 2*NXP)

6391 FORMAT(' VSSCON= ',E12.6,/,' PSSCON= ',El2.6,/,

3919

520
500

' TSSCON= ',El12.6)

IF (IOUT8.GE.1l) THEN

WRITE(8,3919) ITMEN, YERR
WRITE(8,1030) ITIME, TIME

WRITE (8, 6391)VSSCON, PSSCON, TSSCON
WRITE(8,1021)

WRITE(8,1022) (VEL(PNODE(N),1),N= 1,36)
WRITE(8,1023)

WRITE(8,1022) (VEL(PNODE(N),2),N= 1,36)
WRITE(8,1050)

WRITE(8,1022) (PSI(PNODE(N)),N= 1,36)
WRITE(8,1024)
WRITE(8,1022) (PDYN(PNODE (N} ) -PDYN (NGNODE} ,N= 1, 36)
WRITE(8,1025)
WRITE(8,1022) (TEMP (PNODE(N)) ,N= 1,36)

END IF
IF (IMODE.EQ.1) THEN

WRITE(6,3919) ITMEN, YERR
WRITE(6,1030) ITIME, TIME

WRITE(6,1021)

WRITE(6,1022) (VEL(PNODE(N},1),N= 1,36)
WRITE(6,1023)

WRITE(6,1022) (VEL(PNODE(N),2),N= 1,36)
WRITE(6,1050)

WRITE(6,1022) (PSI{PNODE(N)),N= 1,36)
WRITE(6,1024)
WRITE(6,1022) (PDYN(PNODE (N) ) -PDYN (NGNODE) ,N= 1,36)
WRITE(6,1025)
WRITE(6,1022) {TEMP (PNCDE(N)),N= 1,36)

END IF
FORMAT(/' MEN IT# = ',61I6," MEN ERR= ',El2.6)

IF (IGO.EQ.0) GOTO 503

N= NGNODE-NXP

DO 520 K= 1,NXP

N= N+1

TSURF (K)= DBLE (TEMP(K})

PSURF (K) = DBLE (PDYN(K) -PDYN (NGNODE) )
CONTINUE

CONTINUE

IF (IOUT8.GE.l) WRITE(S,7234)
IF (IMODE.EQ.1) WRITE(6,7234)



7234 FORMAT(' MENISCUS ITERATION DID NOT CONVERGE')
STOP

503 CONTINUE

C****_*******************************************************************
C***********************************************************************
C UNIT 9 PLOT DATA OUTPUT

C***********************************************************************
C***********‘k****************'k******************************************

TITLINE= ' MOST RECENT TIME INTERVAL'
WRITE(9,1079)TITLINE, DELT
IF {(IOUTY9.GE.l) THEN
WRITE(9,6295)
DO 6296 NG= 1,NGNODE
IF (NG.LE.NXP} THEN
WRITE(9,6297)NG, XG (NG, 1) ,XG(NG, 2) ,VEL(NG, 1} , VEL(NG, 2),

> TEMP (NG) , PBUB (NG) , PSI(NG) , PDYN (NG) -PDYN (NGNODE)
ELSE
WRITE(9,6297)NG,XG (NG, 1) ,XG (NG, 2),VEL(NG, 1}, VEL(NG, 2},
> TEMP (NG) , PTOT, PSI(NG) , PDYN(NG) -PDYN (NGNODE)
END IF
6296 CONTINUE
END IF

C*****************‘k*****************************************************
C***********************************************************************
C FORMAT STATEMENTS

C***********************************************************************
C*********************************‘k*************************************

1000 FORMAT(' Type in the name of your input file: ',S)
1001 FORMAT (' UNIT 7 INPUT FILE: ',Al2,' UNIT 4 INPUT: ',6Al2)
1002 FORMAT(//,3(A80,/}))

1003 FORMAT (A40,120)

1004 FORMAT (A40,8X,Al12)

1005 FORMAT (A40,1PE20.4)

1020 FORMAT (' INITIAL VELOCITIES,PRESSURES AND TEMPERATURES')
1021 FORMAT (' X1-COMPONENT VELOCITY')}

1022 FORMAT(6(1X,6(E11.5,1X),/).,/)

1023 FORMAT (' X2-COMPONENT VELOCITY')

1024 FORMAT(' DYNAMIC PRESSURE')}

1050 FORMAT(' STREAM FUNCTION')

1051 FORMAT (' TOTAL PRESSURE')

1025 FORMAT (' TEMPERATURE')

1030 FORMAT (/' ITIME= 'L, I12, TIME= ',E12.6)

1031 FORMAT({' PRESS CORR ITPRESS= ',I12)

1098 FORMAT(' PRESS ITPRESS2= ',I12)

1032 FORMAT(' ITVEL= v, 112)

1033 FORMAT(' VELOCITY ITERATION LOOP DID NOT CONVERGE')
1034 FORMAT(' PRESSURE ITERATION LOOP DID NOT CONVERGE')
1035 FORMAT(' ITTEMP= ',6Il2)

1036 FORMAT(' VEL STEADY-STATE CONV ERROR (VSSCON)= ',E12.6,/,
> ' PRESS STEADY-STATE CONV ERROR (PSSCON)= ',E12.6,/,
> ' TEMP STEADY-STATE CONV ERROR (TSSCON)= ',El2.6)

1037 FORMAT(' PRESSURE ERRCR= ',E12.6)

1038 FORMAT(/,* TIME STEP NUMBER= ', I4)
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1039 FORMAT(' STEADY-STATE ITERATION FATLED TO CONVERGE')
1040 FORMAT{A12)

1041 FORMAT(/' STREAM FUNCTICN')

1042 FORMAT{' ITTEMP= ', I12)

1043 FORMAT (' TEMPERATURE ITERATION LOCP DID NOT CONVERGE')
1070 FORMAT{(A12/A12)

1071 FORMAT (A40,615)

1072 FORMAT(' PLOT DATA, 0')

1073 FORMAT (A40,',',I20)

1074 FORMAT(A40,',',1PE20.4)

1075 FORMAT (A40,1X,I20)

6220 FORMAT (A40)

1009 FORMAT(E12.6,6(',',E12.6))

1076 FORMAT (7 (E12.6,1X))

1007 FORMAT(/,' MENISCUS ITERATION= ',I3,/,' MENISCUS GEOMETRY',/,

> 2X,'I',7X,'X',7¥X,'Y',6X, 'nl"',6X,'n2',6X, 'sl',6X, 's2"')
1008 FORMAT (I3, 6F8.4)
6295 FORMAT(' ND, X1, X2, VEL1, VELZ, 'y
> ! TEMP, PBUB, PSI, PDYN')

6297 FORMAT(I5,',',7(E10.4,','),E10.4)
1077 FORMAT(I5,1X,7(E10.4,1X),E10.4)
1078 FORMAT (A40,1X,E20.6)

1079 FORMAT (A40,',',E20.6)

IF (IMODE.GT.0) CLOSE(7)
IF (IOUT8.NE.O.AND.IMODE.GT.0) CLOSE(8)
IF (IOUT9.NE.O0.AND.IMODE.GT.0) CLOSE(9)

STOP
END

B. Subroutine STREAM

SUBROUTINE STREAM (NGNODE, NXP, NYP, NROW)

PARAMETER (MXE= 25, MYE= 20) ! # elements in x & y direcs

PARAMETER (MXN= 1+2*MXE) ! # nodes in x-direction
PARAMETER (MYN= 1+2*MYE) ! # nodes in y-direction
PARAMETER (MTE= MXE*MYE) ! total # elements
PARAMETER (MTN= MXN*MYN) !

PARAMETER (MTN2= MTN+4*MYN+2*MXN+8) !

COMMON/GRID/ o
*X (MTN2,2) ,V{MIN, 2) , PSI (MTN), SURFL (4,MXE), SURFN(4,MXE, 2) ,
*SURFT (4, MXE, 2)

NSTART= NGNODE-NXP+1

PSI(NSTART)= O.

DO 100 J= NSTART,NGNODE, 2
IF (J.NE.NSTART) THEN

AX= 2.*V{(J,2)- 4.%*v(J-1,2)+ 2.*V(J-2,2)
BX= —,,,3,,,:,*V(J_212)+ 4-*V(J_,112,),_ v(J,2)
CX= V(J-2,2)

AY= 2.*V(J,1)- 4.*V(J-1,1)+ 2.*v(J-2,1)
By= -3.*V(J-2,1)+ 4.*V(J-1,1)- v(J,1)

! total # nodes {(quadratic)
! tot # nodes (w/4th-order)



CyY= VQJ-Z,I)

PSI(J-1)= PSI(J-2)+
(AY/24.+BY/8.+CY/2.) *(X(J,2)-X{(J-2,2})-
> (AX/24 ., +BX/8.+CX/2.)*(X(J,1)-X(J-2,1))

\

PSI(J)= PSI(J-1)+
(7.*AY/24.+3.*BY/8.+CY/2.)*(X(J,2)-X(J-2,2))~
> (7.*AX/24.+3.*BX/8.+CX/2.)*(X(J,1)-X(J-2,1))

\

END IF
100 CONTINUE

DO 200 J= NSTART,NGNODE
JT= J-NROW
JM1l= J-NXP
JM2= J
DO 200 K= 2,NYP
AX= 2.*V(JT,2)- 4.*V(JM1,2)+ 2.*V(IMZ,2)

BX= -3.*V{IJM2,2)+ 4.*V(IML,2)- V{(JT, 2)
CX= V(JIM2,2)

AYy= 2.*V(JT,1)- 4 ,*V(JIM1,1)+ 2.*V(IM2,1)
BY= -3.*V{(JM2,1)+ 4.*V(JdMl,1)- V{(JT, 1)
CY= V(JM2,1)

PSI(JM1)= PSI(JM2)+
> (AY/24.+BY/8.+CY/2.)*(X(JT,2)-X{(JM2,2)) -
> (AX/24.4BX/8.+CX/2.)*(X(JT,1})-X(IM2,1))

PSI(JT)= PSI(IM1)+
> (7.*%AY/24.+3.*BY/8.+CY/2.)*(X(JT,2)-X(IM2,2) }-
> (7.*AX/24.+3.*BX/8.+CX/2.)*(X{(JT,1)-X(IM2,1) )
JM2= JT
JM1l= JT-NXP
JT= JT-NROW
200 CONTINUE
RETURN

END

C. Subroutine GQWEIGHT

SUBROUTINE GQWEIGHT (NPOINT)

C******************************************{*****************************

C Tabular lookup of abscissae and weight coefficients for gaussian
C quadrature formula. Tables stored in subroutine data blocks.

C Capability of determining coefficients for 2 to 10 point integration.
C***********************************************************************

COMMON/VINTEG/XI(10,2),W(10)

DIMENSION C(9,2,10)
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DATA

*(c(1,1,J),3=1,10)/-.5773502691, .5773502691, 8*0./,
*(c(1,2,J),3=1,10)/1.0000000000,1.0000000000, 8*0./

DATA

*(C(2,1,7),3=1,10)/-.7745966692,0.0000000000, .7745966692,
*(c(2,2,J),3=1,10)/ .5555555555, .8888888888, .5555555555,
DATA

*(C{3,1,J),3=1,10)/-.8611363115,-.3399810435, .3399810435,
* ,8611363115, 6*0./,

*(C(3,2,3),J=1,10)/ .3478548451, .6521451548, .6521451548,
* .3478548451, 6*0./

DATA

*(C(4,1,3),J=1,10)/-.9061798459,-.5384693101, .0000000000,
* ,5384693101, .9061798459, 5*0./,

*(C(4,2,J),3=1,10}/ .2369268850, .4786286704, .5688888888,

* .4786286704, .2369268850, 5*0./
DATA

*(C(5,1,J),J=1,10)/-.9324695142, -.6612093864, -.2386191860,
* ,2386191860, .6612093864, .9324695142, 4*0./,
*(C(5,2,J),3=1,10)/ .1713244923, .3607615730, .4679139345,
* 4679139345, .3607615730, .1713244923, 4*0./

DATA - S
*(Cc(6,1,J},3=1,10)/-.9491079123,-.7415311855,-.4058451513,

7*0./,
7*0./

*0.0000000000, .4058451513, .7415311855, .9491079123, 3*0./,

*(C(6,2,J),d=1,10)/ .129484%661, .2797053914, .3818300505,

* ,4179591836, .3818300505, .2797053%14, .1294849661, 3*0./

DATA
*{C{7,1,3),J=1,10})/-.9602898564, -.7966664774,-.5255324099,
*-,1834346424, .1834346424, .5255324099, .7966664774,

* .9602898564, 2*0./,

*(C(7,2,J),J=1,10)/ .1012285362, .2223810344, .3137066458,
* .3626837833, .3626837833, .3137066458, .2223810344,
* .1012285362, 2*0./

DATA
*{C(8,1,J7),J=1,10)/-.9681602385,-.8360311073,~-.6133614327,
*-,3242534234,0.0000000000, .3242534234, .6133614327,

* ,8360311073, .9681602395, 0./,

*(C(8,2,J),J=1,10}/ .0812743883, .1806481606, .2606106964,
* ,3123470770, .3302393550, .3123470770, .2606106964,

* ,1806481606, .0812743883, 0./

DATA
*(C(9,1,3),J=1,10}/-.9739065285,~-.8650633666,-.6794095682,
*-.4333953941,-.1488743389%, .1488743389, .4333953941,

* .6794095682, .8650633666, .9739065285/,

*{C(9,2,J3),3=1,10)/ .0666713443, .1494513481, .2190863625,
* 2692667193, .2955242247, .2955242247, .2692667193,

* ,2190863625, .1494513491, .0666713443/

NINDEX= NPOINT-1

DO 100 NP= 1,NPOINT
W(NP)= C(NINDEX, 2,NP)
XI(NP,1)= C(NINDEX,1,NP)
XI(NP,2}= C(NINDEX, 1, NP)

100 CONTINUE

RETURN



END

D. Subroutine GEOM

SUBROUTINE GEOM(NXP,NYP,NXE,NYE,NGNODE,NELEMENT,NCORNER,NROW,NCOL,
> IPRESS,NGNODE2,RASPECT,DXE,DYE,DXN,DYN,DXMIN,DYMIN,VOL)

c***********************************************************************

C Definition of global node coordinates, global/local coincidence,

C surface nodes, surface/domain coincidence
C***********************************************************************

4 elements in x & y direcs
# nodes in x-direction
# nodes in y-direction

PARAMETER (MXE= 25, MYE= 20} !
PARAMETER (MXN= 1+2*MXE) !
PARAMETER (MYN= 1+2*MYE) !
PARAMETER (MTE= MXE*MYE) | total # elements

PARAMETER (MTN= MXN*MYN) | total # nodes (quadratic)
PARAMETER (MTE2= MXE-2+2*(MYE-1)) ! # 6-node pressure elements
PARAMETER (MTEl= MTE-MTE2-2) ! 4 4-node pressure elements
PARAMETER (MTCl= (1+MXE)*(1+MYE}) ! # corner nodes

PARAMETER (MTC2= 2*(1+MYE)+1+MXE+2) ! extra nodes for mixed press
PARAMETER (MTC= MTC1+MTC2) ! total # press nodes
PARAMETER (MTN2= MTN+4*MYN+2*MXN+8) ! tot # nodes {w/4th-order)

COMMON/GRID/
*XG(MTN2,2),VEL(MTN,2),PSI(MTN),SURFL(4,MXE),SURFN(4,MXE,2),
*SURFT (4,MXE, 2)

COMMON/GRIDTYPE/
*CL(MTE1,4),CLLQ(MTE2,6),CLQ(2,9),ECL(MTE,2),CQ(MTE,9),GNODE(MTC),
*CNODE (MTN) , C24 (MTE2, 15),C44(2,25) , PNODE(36) ,NSURF (4) ,

*SURFNODE (4, MXN) , CSURF (4, MXE, 3) ,CE(MTN2, 4) ,NCE (MTN2) ,
*CES (MXN, 2}, NCES (MXN) , IDIRICH {MTN2)

COMMON/SURFTYPE/ NESURF (4)

COMMON/SURFACE/
*XSURF (MXN) , YSURF (MXN) , YSURFO (MXN) , PSURF (MXN} , PBUB (MXN) ,
*PSURF (MXN) , SURFNN (MXN, 2) , SURFNT (MXN, 2}

DOUBLE PRECISION XSURF, YSURF, YSURFO, PSURF, TSURF, SURFNN
>SURFNT, PBUB

INTEGER CL,CQ,GNODE,CNODE,PNODE,SURFNODE,CSURF,GAM,BETA,R,S,P,ECL,
>CLLQ,CLQ,CE,CES,C24,C44

Nl= 1
N2= NXP-2
NE= 1
NEL= 1
NELQ= 1
NEQ= 1
NMID= 2* {NXE-2)+1
DO 2 N= 1,NYE
DO 3 I= N1,N2,2

CQ(NE, 1)= I+NROW ! Quadratic coincidence table
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CQ{(NE, 2)= I+NROW+1

CQ(NE, 3)= I+NROW+2

CQ(NE,4)= I+NXP+2

CQ(NE,5)= I+2

CQ(NE,6)= I+1

CQ(NE,7)= I

CQ(NE, 8)= I+NXP

CQ(NE, 9)= I+NXP+1

IF (N.EQ.1l) THEN I Linear/mixed coincidence tables

IF (I.EQ.N1.OR.I.EQ.N2) THEN
IF (IPRESS.EQ.1) THEN

CLQ(NEQ, 1)= I+NROW

CLQ{NEQ, 2)= I+NROW+1

CLQ(NEQ, 3) = T+NROW+2

CLQ(NEQ, 4)= T+NXP+2

CLQ(NEQ,5)= I+2

CLQ(NEQ, 6)= I+l ;
CLQ(NEQ,7)= 1 i
CLQ(NEQ, 8) = I+NXP ;
CLQ(NEQ, 9)= I+NXP+1
ELSE

CLQ(NEQ, 1})= I+NROW

CLQ(NEQ,2)= T+NROW+2 ]
CILQ(NEQ, 3)= I+2
CLQ(NEQ,4)=1I :
END IF ;

IF (I.EQ.N1}) THEN
C44 (NEQ,1)= I+NROW : |
C44 (NEQ,2)= NGNODE+25+2*NMID i
C44 (NEQ,3)= I+NROW+1

C44 (NEQ,4)= C44(NEQ,2)+1

C44 (NEQ,5)= I+NROW+2

C44(NEQ, 6) = NGNODE+21+NMID
C44 (NEQ, 7) = I+NXP+2 -

C44 (NEQ, 8) = NGNODE+9

C44 (NEQ,9)= I+2

C44 (NEQ, 10) = NGNODE+2
C44(NEQ,11)= I+l

C44 (NEQ, 12) = NGNODE+1
C44(NEQ, 13)= I

C44 (NEQ, 14)= NGNODE+5

C44 (NEQ, 15)= I+NXP

C44 (NEQ, 16) = NGNODE+17+NMID
C44 {NEQ, 17)= C44(NEQ,16)+1
C44 (NEQ, 18)= C44(NEQ,17)+1
C44 (NEQ, 19)= C44(NEQ,18)+1
C44 (NEQ,20)= 14+NMID+NGNODE
C44 (NEQ, 21) = NGNODE+8

C44 (NEQ, 22)= C44(NEQ,21)-1 :

C44 (NEQ, 23)= C44(NEQ,22)-1
C44 (NEQ, 24) = 13+NMID+NGNODE
C44(NEQ, 25)= I+NXP+1

ELSE IF (I.EQ.N2) THEN

C44 (NEQ,1)= I+NROW ]
C44 (NEQ,2)= C44(1,4)+1 :
C44(NEQ,3)= I+NROW+1 '
C44 (NEQ,4)= C44(NEQ,2)+1 f
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C44(NEQ, 5)
C44(NEQ, 6)
C44 (NEQ, 7)
C44 (NEQ, 8)
C44 (NEQ, 9)
C44 (NEQ, 10
C44 (NEQ, 11
C44 (NEQ, 12
C44 (NEQ, 13
C44 (NEQ, 14
C44 (NEQ, 15
C44(NEQ, 16
C44(NEQ, 17
C44 (NEQ, 18
C44 (NEQ, 19
C44 (NEQ, 20
C44 (NEQ, 21
C44 (NEQ, 22
C44 (NEQ, 23
C44 (NEQ, 24
C44 (NEQ, 25
END TF

i i [ I | T TR T

ECL(NE,1)= 2

T+NROW+2
C44(1,6)+3+NMID
I+NXP+2

Cc44 (1, 8)+3+NMID
I+2

C44(1,10)+2

I+l

C44(1,10)+1

I
C44(1,14)+3+NMID
I+NXP
C44(1,16)+3+NMID
C44 (NEQ, 16)+1
C44(NEQ,17)+1
C44 (NEQ,18)+1
C44(1,20)+2
C44(NEQ, 8)-1
C44 (NEQ,21)-1
C44 (NEQ,22)-1
C44(1,20)+1
I+NXP+1

ECL(NE, 2)= NEQ

NEQ= NEQ+1
ELSE

IF (IPRESS.EQ.1) THEN
CLIQ(NELQ, 1)= I+NROW
CLIQ(NELQ, 2)= I+NROW+2

) = T+NXP+2

CLLQ(NELQ, 4)= I+2

CLIQ(NELQ, 5
CLLQ (NELQ, 6) = I+NXP

ELSE
CLLQ (NELQ,
CLLQ (NELQ,
CLLQ(NELQ, 3
CLLQ (NELQ,
END IF

C24 (NELQ, 1)
C24 (NELQ, 2)
C24 (NELQ, 3)
C24 (NELQ, 4)
C24 (NELQ, 5)
C24 (NELQ, 6)
C24 (NELQ, 7)
C24 (NELQ, 8)
C24 (NELQ, 9)
C24 (NELQ, 10
€24 (NELQ, 11
C24 (NELQ, 12
C24 (NELQ, 13
C24 (NELQ, 14
C24 (NELQ, 15

ettt et N | I VI | A T [ T IO |

muw o uun

ECL(NE,1)= 1

1
2

4

)= I

I+NROW
I+NROW+2

)
)
) I+2
)

I+NROW

C24 (NELQ, 1) +1

C24 (NELQ, 2)+1
C44(1,6)+(NELQ-1)*2+2
I+NXP+2
C44(1,8)+(NELQ-1) *2+2
I+2

I+l

I

C44(1,8)+(NELQ-1)*2
I+NXP
C44(1,6)+(NELQ-1)*2
C24(NELQ,12)+1
I+NXP+1

C24 (NELQ,10)+1
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ECL(NE, 2) = NELQ
NELQ= NELQ+1
END IF
ELSE
IF (I.EQ.N1.OR.I.EQ.N2) THEN
IF (IPRESS.EQ.1) THEN
CLIQ(NELQ, 1)= I+NROW
CLLQ(NELQ, 2)= I+NROW+1

CLLO (NELQ, 3) = I+NROW+2
CLLQ{(NELQ, 4) = I+2
CLLQ(NELQ, 5)= I+l
CLIQ(NELQ,6)= I

ELSE

CLLQ(NELQ, 1) = I+NROW
CLLQ (NELQ, 2) = I+NROW+2
CLLQ (NELQ, 3)= I+2
CLIQ(NELQ,4)= I

END IF

NREF= 24+2*NMID+8* (N-1)}+1+NGNODE
IF (I.EQ.N2) NREF= NREF+2

C24 (NELQ,1)= I+NROW

C24 (NELQ,2)= NREF

C24 (NELQ, 3)= I+NROW+1

C24 (NELQ,4)= NREF+1

C24 (NELQ, 5)= I+NROW+2

C24 (NELQ, 6)= I+NXP+2
C24(NEIQ,7)= TI+2.
C24 (NELQ, 8)= NREF-7
C24 (NELQ,9)= I+l

C24 (NELQ, 10) = NREF-8
C24 (NEIQ,11)= I

C24 (NELQ, 12)= I+NXP
C24 (NELQ, 13)= NREF-4
C24 (NELQ, 14) = I+NXP+1
C24 (NELQ, 15) = NREF-3

ECL(NE,1)= 1
ECL(NE, 2)= NELQ

NELQ= NELQ+1
ELSE
CL(NEL,1)= I+NROW ! Linear coincidence table

CL(NEL, 2)= I+NRCW+2
CL(NEL,3)= I+2
CL(NEL,4)= I
ECL(NE,1)= 0
ECL(NE,2)= NEL
NEL= NEL+1
END IF
END IF

NE= NE+1

3 CONTINUE
Ni= N1+NROW
N2= N2+NROW
2 CONTINUE
NEQ= NEQ-1



NELQ= NELQ-1

C Corner node identifier

967

30

31

C SET

DO 967 N= 1,NGNODE
CNODE(N)= 0
Nl= 1
N2= NXP
NCORNER= 0
DO 4 I= 1,NYP,2
DO 5 K= N1,N2,2
NCORNER= NCORNER+1
CNODE(K)= NCORNER
GNODE (NCORNER) = K
Nl= N1+NROW
N2= N2+NROW
CONTINUE

IF (IPRESS.EQ.1) THEN
DO 30 N= 1,2
IF (N.EQ.1l) K= 2
IF (N.EQ.2) K= NXP-1
DO 30 I= 1,NYE+1l
NCORNER= NCORNER+1
CNODE (K) = NCORNER
GNODE (NCORNER) = K
K= K+NROW
CONTINUE
DO 31 K= NXP+1,2*NXP, 2
NCORNER= NCORNER+1
CNCODE (K) = NCORNER
GNODE (NCORNER) = K
CONTINUE
CNODE (NXP+2 )= NCORNER+1
GNODE (NCORNER+1) = NXP+2
CNCDE (2*NXP-1) = NCORNER+2
GNODE (NCORNER+2) = 2*NXP-1
NCORNER= NCORNER+2
END IF

GLOBAL COORDINATES

DO 6 I= 1,NYE+1l

NS= (I-1)*NROW+1

N= NS

DO 6 J= 1,NXP
XG(N,1)= REAL(XSURF (J))
XG(N,2)= XG(NS, 2) *REAL(YSURF (J) ) /REAL (YSURF (1))
N= N+1

CONTINUE

NE= 0
DO 7 I= 1,NYE
DO 8 J= 1,NXE
NE= NE+1
DO 8 K= 1,2
IF (I.EQ.NYE) XG(CQ(NE,2},K)=
* (XG{CQ(NE, 1) ,K) +XG(CQ(NE, 3),K)) /2.
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[ AT

8 CONTINUE
DO 9 K= 1,2

7 CONTINUE
DO 10 NE= 1,NELEMENT
XG (CQ(NE, 9),1) = (XG (CQ(NE, 2) , 1) +XG(CQ(NE, 6), 1)) /2.
XG(CQ(NE, 9),2)=(XG(CQ(NE, 2),2)+XG(CQ(NE, 6),2) ) /2.

10

C x-coordinates of quadratic node additions

CONTINUE

DO 100 N= 1,NEQ
XG(C44(N,12),1)
XG(C44(N,23),1)
XG(C44 (N,24),1)
XG{(C44(N,17),1)
XG(C44(N, 2),1)=
XG(C44(N,10},1)=
XG(C44(N,21),1)=
XG(Cc44(N,20),1)=
XG(C44(N,19),1)=
XG(C44 (N, 4),1)=
XG(C44(N,22),1)=
XG(C44(N,18),1)=

.5% (XG(C44 (N, 13),1)+XG(C44(N,11),1))
(

XG{C44(N,12),1)
XG(Cc44(N,12),1)
XG(C44(N,12),1)
XG{(C44(N,12},1)

.5% (XG(C44 (N, 11),1)+XG(C44(N, 9),1))

XG(C44(N,10),1)
XG(C44(N,10),1)
XG(C44(N,10),1)
XG(C44(N,10},1)
XG(C44(N,11),1)
XG{C44(N,11),1)
XG(C44(N,13),1)

[T "

(
XG(C44(N,14),1)=
XG(C44 (N,16),1)= XG(C44(N,13),1)
XG(C44 (N, 8),1)= XG(C44(N, 9),1)
XG(C44 (N, 6),1)= XG(C44(N, 9),1)

100 CONTINUE

DO 101 N= 1,NELQ

IF (N.LE.NXE-2) THEN
XG(C24(N,10),1)= XG{C24(N, 9),1)
XG(C24(N,12),1)= XG(C24(N, 9),1)
XG(C24 (N,15),1)= XG(C24(N, 8),1)
XG(C24(N,13),1)= XG(C24(N, 8),1)
XG(C24 (N, 6),1)= XG(C24(N, 7),1)
XG(C24 (N, 4),1)= XG(C24(N, 7),1)

ELSE
XG(C24 (N, 10)
XG(C24 (N, 8)
XG{C24(N,13)
XG(C24 (N, 2)
XG(C24(N,15),1
XG(C24 (N, 4),1

END IF

101 CONTINUE

DO 110 N= 1,NEQ

XG(C44(N,12),2)= QCAL(XG(C44(N,12),1),

> XG(C44 (N,13),1),XG(C44(N,11),1) ,XG(C44 (N, 9), 1),

> XG(C44 (N, 13),2),XG(C44(N,11),2),XG(C44 (N, 9),2))

XG(C44 (N, 10),2)= QCAL(XG(C44(N,10),1),

> XG(C44 (N, 13),1),XG(C44(N,11),1) ,XG(C44 (N, 9),1),

> XG(C44 (N, 13),2),XG(C44(N,11),2),XG(C44 (N, 9),2}))

XG(C44 (N, 24),2)= QCAL(XG(C44(N,24),1),

> XG(C44 (N, 15),1),XG(C44(N,25),1),XG(C44(N, 7),1),

> XG(C44 (N, 15),2),XG(C44(N,25),2) ,XG(C44 (N, 7),2))

XG(C44 (N, 20),2)= QCAL(XG(C44(N,20),1),

.5% (XG(C24 (N, 11),1)+XG(C24 (N, 9),1))
.5*% (XG(C24 (N, 9),1)+XG(C24(N, 7},1))
XG(C24(N,10),1)
XG(C24(N,10),1)
XG(C24(N, 8),1)
XG(C24(N, 8),1)

?
L
1
1

nnon i u

)
)
)
)
)
)
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110

>

>
XG(C44 (N,
>

> XG(C44(N, 1),1),XG(C44(N,
> XG(C44(N, 1),2),XG(C44(N,
5* (XG(C44(N,13),2)+XG(C44 (N, 15),2))
XG(C44(N,16),2}= .5*(XG(C44(N,15),2)+XG(C44 (N, 1),2))
XG(C44(N,23),2)= .5%(XG(C44(N,12),2)+XG(C44(N,24),2))
XG(C44(N,17),2)= .5*(XG(C44(N,24),2)+XG(C44(N, 2),2))
XG(C44(N,22),2)= .5*(XG(C44(N,11),2)+XG(C44(N,25),2))
XG(C44(N,18),2)= .5*%(XG(C44(N,25),2)+XG(C44(N, 3),2))
XG(C44(N,21),2)= .5*(XG(C44(N,10),2)+XG(C44(N,20},2))

XG(C44(N,19),2)= .5%({XG(C44(N,20),2)+XG(C44 (N, 4),2))
XG(C44 (N, 8),2)= .5*%({XG(C44(N, 9),2)+XG(C44(N, 7),2))
XG(C44 (N, 6),2)= .5*(XG(C44(N, 7),2)+XG(C44 (N, 5),2))
CONTINUE
DO 111 N= 1,NELQ
IF (N.LE.NXE-2) THEN
XG(C24 (N,15),2)= .5*(XG(C24(N, 8),2)+XG(C24(N,14),2))
XG(C24(N,13),2)= .5*(XG(C24(N,14),2)+XG(C24 (N, 2),2))
XG(C24(N, 6),2)= .5*(XG(C24(N, 7),2)+XG{C24(N, 5),2))
XG(C24(N, 4),2)= .5*(XG(C24(N, 5),2)+XG{C24 (N, 3),2))
ELSE
XG(C24 (N, 2),2)= QCAL(XG(C24(N, 2),1),
> XG(C24(N, 1),1),%XG(C24(N, 3),1),XG(C24(N, 5),1),
> XG(C24(N, 1),2),XG(C24 (N, 3),2)},XG(C24(N, 5),2))
XG(C24 (N, 4),2)= QCAL(XG(C24(N, 4),1),
> XG(C24(N, 1),1),XG(C24(N, 3),1),XG(C24(N, 5),1),
> XG(C24(N, 1},2),XG(C24(N, 3),2),XG(C24(N, 5),2))
XG(C24(N,13),2)= .5*(XG({C24(N,10},2)+XG{(C24 (N, 2)},2))
XG(C24(N,15),2)= .5*(XG(C24 (N, 8),2)+XG(C24(N, 4),2))
END IF

XG(C44(N,15),1),XG(C44(N,25),1) ,XG(C44 (N,

XG(C44(N,15),2),XG(C44(N,25),2),XG(C44 (N,

2),2)= QCAL(XG(C44(N, 2),1),

XG(C44(N, 1),1),XG(C44(N, 3),1),XG(C44 (N,
> XG(C44 (N, 1),2),XG(C44(N, 3),2),XG(C44(N,
XG(C44 (N, 4),2)= QCAL(XG(C44(N, 4),1),

XG{C44(N,14),2)= .

111 CONTINUE

C Minimum grid dimensions

C Boundary node definition and type

11

DXMIN=
DYMIN=

NSURF(1)= NYP
NSURF (3} = NYP
NSURF (2) = NXP-2
NSURF (4} = NXP-2

NP= -1*NXP+1
DO 11 N= 1,NSURF(1)

NP=NP+NXP
SURFNODE(1,N)= NP

CONTINUE

NP= NGNODE-NXP+1
DO 12 N= 1,NSURF(2)

NP=NP+1

XG(2,1)-XG(1,1)
XG (NXE+1, 2} —XG (NXE+14NROW, 2)

3),1),XG(C44 (N,
3),2),XG(C44 (N,

7),1),
7}.2))

5).,1),
5),2))

5),1),
5),2))
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SURFNCDE(2,N}= NP
12 CONTINUE

Np= 0
DO 13 N= 1,NSURF({3)
NP=NP+NXP
SURFNODE(3,N)= NP
13 CONTINUE

Np= 1 )
DO 14 N= 1,NSURF(4)
NP= NP+1
SURFNCODE (4,N)= NP
14 CONTINUE

C Boundary element definition and properties

NESURF (1)= NYE
NESURF (3)= NYE
NESURF (2)= NXE
NESURF (4) = NXE

NG= 1
DO 15 N= 1,NESURF(1)
CSURF(1,N, 1)= NG+NROW
CSURF (1,N, 2)= NG+NXP
CSURF(1,N,3)= NG
SURFL(1,N)= SORT( (XG(NG+NROW,1)-XG(NG,1))**2+
* (XG (NG+NROW, 2) -XG (NG, 2} ) **2)

SURFT(1,N,1)= (XG(NG,1)-XG(NG+NROW, 1)) /SURFL(1,N)
SURFT(1,N,2)= (XG(NG,2)-XG(NG+NROW, 2))/SURFL(1,N)
SURFN(1,N,1)= -1.*SURFT(1,N,2)
SURFN(1,N,2)= SURFT(1,N,1)
NG= NG+NROW
15 CONTINUE
NG= NGNODE

DO 18 N= 1,NESURF(2)
CSURF(2,N,1)= NG
CSURF(2,N,2)= NG-1
CSURF (2,N,3)= NG-2
SURFL(2,N)= SQRT( (XG(NG-2,1)-XG(NG,1))**2+
* (XG(NG-2,2)~-XG(NG,2) ) **2)

SURFT(2,N,1)= (XG (NG-2, 1) -XG (NG, 1) ) /SURFL(2,N)
SURFT(2,N,2)= (XG(NG-2,2)-XG (NG, 2) ) /SURFL{2,N)
SURFN(2,N,1)= -1.*SURFT(2,N,?2)
SURFN(2,N,2)= SURFT(2,N, 1)
NG= NG-
18 CONTINUE
NG= NXP

DO 16 N= 1,NESURF(3)
CSURF(3,N,1)= NG
CSURF (3,N, 2) = NG+NXP
CSURF(3,N, 3) = NG+NROW
SURFL(3,N)= SQRT ( (XG (NG+NROW, 1) -XG (NG, 1) ) **2+
* (XG (NG+NROW, 2) -XG (NG, 2) ) **2)
SURFT(3,N,1)= (XG(NG+NROW,1)-XG(NG,1))/SURFL(3,N)
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SURFT(3,N,2)= (XG(NG+NROW, 2)-XG(NG,2))/SURFL(3,N)
SURFN(3,N,1)= -1.*SURFT(3,N,2)
SURFN(3,N, 2)= SURFT(3,N, 1)
NG= NG+NROW
CONTINUE

VOL= 0.
NG=1
DO 17 N= 1,NESURF(4)
CSURF (4,N,1)= NG
CSURF(4,N,2)= NG+1
CSURF(4,N, 3)= NG+2
X1l= XG(NG, 1)
X2= XG(NG+1,1)
X3= XG(NG+2,1)
Vl= XG(NG,2)
V2= XG(NG+1,2)
V3= XG(NG+2,2)
A= ((V1-V2)/(X1-X2)-(V2-V3)/(X2-X3))/(X1-X3)
B= (V1-V2)/(X1-X2)-a* (X1+X2)
C= V1-A*X1**2-B*X1
X1P= 2.*A*X1+B
X3P= 2.*A*X3+B
SURFL{4,N)= (X3P*SQRT(X3P**2+1.}+ALOG(X3P+SQRT (X3P**2+1.))-
X1P*SQRT (X1P**2+1. ) ~ALOG (X1P+SQRT (X1P**2+1.)})/
4./A

SURFT(4,N,1)= (XG(NG+2,1)}-XG(NG,1))/SURFL(4,6N)}
SURFT(4,N,2)= (XG(NG+2,2)-XG(NG,2))/SURFL(4,N)
SURFN(4,N,1)= -1.*SURFT(4,N,2)
SURFN(4,N,2)= SURFT (4,N,1)
VOL= VOL+.5* (XG (NG+2, 2} +XG (NG, 2) ) * (XG(NG+2, 1) -XG(NG, 1))
NG= NG+2
17 CONTINUE

C Node-Element Correlation Table

35

DO 35 NG= 1,NGNODE2

NCE(NG)= 0

IDIRICH(NG)= 0

DO 35 N= 1,4
CE(NG,N})= 0

CONTINUE

DO 40 NE= 1,NELEMENT
IF (ECL(NE,1).EQ.0) THEN
NM= 9
ELSE IF (ECL(NE,1l).EQ.1) THEN
NM= 15
ELSE IF (ECL(NE,1l).EQ.2) THEN
NM= 25
END IF
DO 40 N= 1,NM
IF (ECL(NE,1l).EQ.0) THEN
NG= CQ(NE,N)
ELSE IF (ECL(NE,1l).EQ.1l) THEN
NG= C24 (ECL(NE,2),N)
ELSE IF (ECL(NE,1l).EQ.2) THEN
NG= C44 (ECL(NE,2)},N)
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41

42
40

50

61

62
60

80
81

END IF
IF (NCE(NG).EQ.0} THEN
NCE (NG)= NCE(NG)+1
CE (NG, NCE{NG) )= NE
ELSE
DO 41 NC= 1,NCE(NG)
IF (CE(NG,NC).EQ.NE) GOTO 42
NCE (NG) = NCE(NG)+1
CE(NG,NCE(NG))= NE
CONTINUE
END IF
CONTINUE

DO 50 NG= 1,NXP

NCES(NG}= 0

DO 50 N= 1,2
CES(NG,N)= 0

CONTINUE

DO 60 NE= 1,NESURF (4)
DO 60 N= 1,3

NG= CSURF (4,NE,N)

IF (NCES(NG).EQ.0) THEN
NCES (NG) = NCES(NG) +1
CES(NG,NCES (NG} )= NE

ELSE
DO 61 NC= 1,NCES(NG)

IF (CES(NG,NC).EQ.NE) GOTO 62
NCES (NG) = NCES(NG)+1
CES (NG,NCES(NG) )= NE
CONTINUE
END IF
CONTINUE
NL= 1
NR= NXP

DO 80 N= llNYP

IDIRICH(NL})= 1

IDIRICH(NR)= 1 -

NL= NL+NXP

NR= NR+NXP

CONTINUE

DO 81 N= NGNODE-NXP+1,NGNODE
IDIRICH(N)= 1

IDIRICH (NGNODE+5)= 1
IDIRICH (NGNODE+12+NMID}= 1
IDIRICH (NGNODE+17+NMID)= 1
IDIRICH (NGNODE+24+2*NMID)= 1
RETURN

END

Function QCAL

FUNCTION QCAL(X,X1,X2,X3,V1,V2,V3)



al

c***********************************************************************

C Calculates y-coord along 2nd-order curve
C***********************************************************************

A= ((V1-V2)/(X1-X2)-(V2-V3)/(X2-X3))/(X1-X3)
B= (V1-V2)/(X1-X2)-A* (X1+X2)
C= V1-A*X1**2-B*X1

QCAL= A*X**2+B*X+C

RETURN
END

F. Subroutine GEOM?2

SUBROUTINE GEOMZ(NXE,NYE,NXP,NROW,NSMALL,RASPECT,FSCALE)
PARAMETER (MXE= 25, MYE= 20) ! # elements in x & y direcs
PARAMETER (MXN= 1+2*MXE) | # nodes in x-direction
PARAMETER (MYN= 1+2*MYE) | # nodes in y-direction
PARBMETER (MTE= MXE*MYE) 1 total # elements

PARAMETER (MTN= MXN*MYN) ! total # nodes (quadratic)
PARAMETER (MTN2= MTN+4*MYN+2*MxXN+8) ! tot # nodes (w/4th-order)

COMMON/GRID/
*XG(MTN2,2).VEL(MTN,Z),PSI(MTN),SURFL(4,MXE),SURFN(4,MXE,2),
*SURFT (4, MXE, 2)

COMMON/ SURFACE/
*XSURF(MXN),YSURF(MXN),YSURFO(MXN),PSURF(MRN),PBUB(MXN),
*TSURF (MXN) , SURFNN (MXN, 2) , SURFNT (MXN, 2)

DIMENSION FSCALE(2),NSMALL(2)
DOUBLE PRECISION XSURF,YSURF, YSURFO, PSURF, TSURF, SURFNN
>SURFNT, PBUB

IF (NSMALL(1l).EQ.0) FSCALE(1l)= 1.
IF (NSMALL(2).EQ.0) FSCALE(2)= 1.
DXS= FSCALE(l)*REAL(NXE)+REAL(NSMALL(1))*(1.—FSCALE(1))
DYS= FSCALE(Z)*REAL(NYE)+REAL(NSMALL(2))*(1.—FSCALE(2))
DXS= 1./DXS/2.
DYS= 1./DYS/2.
DXL= FSCALE(1)*DXS
= FSCALE(2)*DYS
NSX= NSMALL (1)
NSY= 2*NSMALL{2)
= NXE-NSX
NLY= NYE*2-NSY

XSURF(1)= 0.
XSURF (NXP)= 1.

DO 3 N= 2,NSX+NLX+1

NN= NXP-N+1

IF (N-1.LE.NSX) THEN
DX= DXS
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ELSE
DX= DXL
END IF
XSURF (N) = XSURF (N-1)+DX
XSURF (NN) = XSURF (NN+1)-DX
3 CONTINUE
XSURF (NXE+1)= 0.5

XG(1,2)= RASPECT
NP= 1 '
DO 4 N= 2,NSY+NLY+1
NP= NP+NXP
IF (N-1.LE.NSY) THEN
DY= DYS
ELSE
DY= DYL
END IF -
XG (NP, 2)= XG(NP-NXP,2)-DY
4 CONTINUE
XG(NP,2)= 0.

RETURN
END

G. Subroutine TENSCAL

SUBROUTINE TENSCAL (NELEMENT, NLNQ, NLNL, NPOINT, IPRESS, PR, PVAP)

c***********************************************************************

C Calculates tensors used in formulation of finite element equations.
C***********************************************************************

PARAMETER (MXE= 25, MYE= 20}
PARAMETER (MXN= 1+2*MXE)

PARAMETER (MYN= 1+42*MYE)

PARAMETER (MTE= MXE*MYE) total # elements
PARAMETER (MTN= MXN*MYN) total # nodes (quadratic)

! # elements in x & y direcs

i

|

|

!
PARAMETER (MTE2= MXE-2+2* (MYE-1)) ! # 6-node pressure elements

1

I

|

1

1

# nodes in x-direction
# nodes in y-direction

PARAMETER (MTEl= MTE-MTE2-2) # 4-node pressure elements
PARAMETER (MTCl= (1+MXE)* (1+MYE)) # corner nodes

PARAMETER (MTC2= 2* (1+MYE) +1+MXE+2) extra nodes for mixed press
PARAMETER (MTC= MTC1+MTC2) total # press nodes
PARAMETER (MTNZ2= MTN+4*MYN+2*MXN+8) tot # nodes (w/4th-order)

COMMON/VINTEG/XI(10,2),W(10) . =
COMMON/VLIN/AL1(2),B1(2),C1(2),D1(2),XINL(4,2),XINIQ(6,2,2),DETJIL
COMMON/VQUAD/

*A2(2),B2(2),C2(2),D2(2),E2(2),F2(2),G2(2),H2(2),P2(2),
*XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),AD1(2),AD2(2),BD1(2),BD2(2)

COMMON/GRID/
*%XG(MTN2, 2) , VEL(MTN, 2) , PSI (MIN) , SURFL (4, MXE) , SURFN (4, MXE, 2) ,
*SURFT (4, MXE, 2)

Yy
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COMMON/GRIDTYPE/

*CL(MTEl, 4) ,CLLQ(MTEZ2, 6) ,CLQ(2,9) ,ECL(MTE, 2),CQ(MTE, 9) , GNODE (MTC) ,

*CNODE (MIN) ,C24 (MTE2, 15} ,C44(2,25),

PNODE (36) ,NSURF (4) ,

* SURFNODE (4 ,MXN) , CSURF (4, MXE, 3} ,CE(MTN2, 4) ,NCE (MTN2) ,
*CES (MXN, 2) , NCES (MXN) , IDIRICH (MTN2)

COMMON/ SURFTYPE/ NESURF (4)

COMMON/ SURFACE/

*¥SURF (MXN) , YSURF (MXN) , YSURF0 (MXN) , PSURF (MXN) , PBUB (MXN) ,
*TSURF (MXN) , SURFNN (MXN, 2) , SURFNT (MXN, 2)

COMMON/ TENSOR/

*EA (MTE, 9,9),
*EA24V (MTE2, 9, 15),
*EA44V(2,9,25),
*EA24T (MTE2, 15, 15),
*ED(MTEL, 9,4,2),
*EE (MTEL, 4, 4

),
*EF (MTE1, 4,9,2),
*EG(MTEL,4,9,2,9,2)
*EH(MTEL, 4,9,8,2,2)
*EQ(MTE, 9,2,9,2),

. EGLQ(MTE2, 6,9
.EHLQ (MTE2, 6,9

EB(MTE, 9,9,9,2),
EB24 (MTE2, 15,9, 15,2),
EB44(2,25,9,25,2},
EAad4T(2,25,25),
EDLQ (MTEZ2,9,6,2),
EELQ(MTE2,6,6),
EFLQ(MTE2,6,9,2),
/2,9,2),
1912l )I
SAQ(MXE, 3,9)

EC(MTE, 9,9),
EC24 (MTEZ, 15,15},
EC44 (2125,25) L4

EDQ(2,9,9,2),
EEQ(2,9,9)
EFQ(2,9,9,
EGQ(2,9,9,
EHQ(2,9,9,
saQ2(2,5,2

2
2,9,2),
9,2,2),
5

)
)

DOUBLE PRECISION XSURF, YSURF, YSURFO, PSURF, TSURF, SURFNN,

>SURFNT, PBUB

INTEGER CL,CQ,CLQ,CLLQ, GNODE, CNODE, PNODE, SURFNODE, CSURF, ECL
INTEGER GAM, BETA,R, S, P,CE,CES,C24,C44

REAL JINV

Momentum,
Momentum,
Momentum,

Momentum

O O0000000n0n
SHBHEERER

Momentum, Energy, Vel Corr
Energy

Energy

Vel Corr

Press Corr init and final
Press Corr final

Press Corr final

Press Corr final

Natural element coordinates: 4-node linear representation

XINL(1,1)=-1.
XINL(2,1)= 1.
XINL(3,1)= 1.
XINL{4,1)=-1.
XINL(1,2})=-1.
XINL(2,2)=-1.
XINL(3,2})= 1.
XINL(4,2)= 1.

C Natural element coordinates: 6-node mixed linear/quad representation

XINLQ(1,1,1)=-1.
XINLQ(2,1,1)= 0.
XINIQ(3,1,1)= 1.
XINILQ(4,1,1)=
XINIQ(5,1,1)= 0

| Side element
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(TR TR C R T T I TR
1
e

! Top element

AU WN O U W N

BB B N RO B = 2 e e

B R0 B B RO RO BU R BNV NN

MY

R R R R
|

O b b O b b R

C Natural element coordinates: 9-node quadratic representation
XINQ(1,1
XINQ(2,1
XINQ(3,1
XINQ(4 1
XINQ(5
XINQ(6
XINQ(7
XINQ(8
XINQ(9
XINQ(l 2
XINQ(2,2
XINQ(3,2
XINQ (4,2

H o nun Il II II i II |I o uwown |I

\,\/\,\,\,\,\,‘,‘,‘.\,\,\.~,\,‘”,.,
O(DPAFJFJOPJFJFAOPJF‘C)F‘HPJC)H

l\)l\Jl\J[\)[\)

C***********************************************************************

C GAUSSIAN QUADRATURE PARAMETERS

C***********************************************************************

C Determine abscissae and weight coefficients for specified number of Gaussian
C Quadrature integration points. Subroutine employs tabular lookup.

CALL GQWEIGHT (NPOINT)
C Clear array values
DO 20 NE= 1,NELEMENT
DO 21 N= 1,NLNQ

DO 21 M= 1,NLNQ
EA(NE,N,M)= Q.
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EC(NE,N,M)= 0.
DO 21 I= 1,2
DO 23 J=1,2
23 EQ(NE,N,J,M,I)= 0.
DO 21 GAM= 1,NLNQ
EB(NE,N,GAM,M, I})= 0.
21 CONTINUE

IF (ECL(NE,1).EQ.0) THEN
NIN= 4
NTN= S

ELSE IF (ECL(NE,1l).EQ.1l) THEN
NLN= 6
NTN= 15

ELSE IF (ECL(NE,1l).EQ.2) THEN
NLN= 9
NTN= 25

END IF

IF (NTN.NE.9) THEN
DO 60 N= 1,NTN
DO 61 M= 1,NLNQ
IF (NTN.EQ.15) THEN
FA24V(ECL(NE,2) ,M,N)= 0.
ELSE
EA44V(ECL(NE, 2) ,M,N)= 0.
END IF
DO 61 L= 1,NTN
DO 61 I=1,2
IF (NTN.EQ.15) THEN
EB24 (ECL(NE, 2) ,N,M,L,I)= 0.
ELSE
EB44 (ECL(NE, 2),N,M,L,I)= 0.
END IF
61 CONTINUE
DO 60 M= llN'I‘N
IF (NTN.EQ.15) THEN
EA24T(ECL(NE,2),N,M)= 0.
EC24(ECL(NE12)INIM)= O.
ELSE .
EA44T(ECL(NE,2) ,N,M)= 0.
EC44 (ECL(NE, 2) ,N,M)= 0.
END IF
60 CONTINUE
END IF

DO 22 N= 1,NLNQ
DO 22 M= 1,NLN
DO 22 I=1,2
IF (ECL(NE,1).EQ.
ED(ECL(NE, 2},
EF(ECL(NE, 2),
ELSE IF (ECL(NE,
EDLQ (ECL(NE, 2)
EFLQ (ECL(NE, 2)
ELSE IF (ECL(NE,
EDQ (ECL(NE, 2)
EFQ(ECL(NE, 2),
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END IF
DO 22 GAM= 1,NLNQ
DO 22 J= 1,2

IF (ECL(NE,1).EQ.0) THEN
EG{ECL{(NE, 2) ,M,N,I,GAM,J)= 0
EH(ECL(NE,2),M,N,GAM, I,J)= 0

ELSE IF (ECL(NE,1l).EQ.1) THEN
EGIQ(ECL(NE,2) ,M,N,I,GAM,J)=
EHLQ (ECL(NE, 2) ,M,N,GAM, I, J)=

ELSE
EGQ(ECL(NE,2),M,N,I,GAM,J)= 0
EHQ({ECL(NE, 2),M,N,GAM, I,J)= 0

END IF

22 CONTINUE
C
DO 20 N= 1,NLN
DO 20 M= 1,NLN
IF (ECL(NE,1).EQ.0) THEN
EE (ECL(NE, 2) ,N,M})= 0.
ELSE IF (ECL(NE,1).EQ.l) THEN
EELQ(ECL(NE, 2) ,N,M)= 0.
ELSE
EEQ(ECL(NE,2),N,M)= 0.
END IF
C

20 CONTINUE

DO 29 NP= 1,NESURF(4)
DO 29 N= 1,3
DO 29 M= 1,NLNQ
SAQ(NP,N,M)= 0.

29 CONTINUE

DO 8% Np= 1,2

DO 8% N= 1,5

DO 89 M= 1,25

SAQ2(NP,N,M)= 0.
89 CONTINUE

C Isoparametric function calculation loop
DO 30 NE= 1,NELEMENT

NILN= 4

IF (ECL(NE,1).EQ.0) THEN
NIN= 4
NTN= 9

ELSE IF (ECL(NE,1).EQ.1) THEN
IF (IPRESS.EQ.1) NLN= 6
NTN= 15

ELSE IF (ECL(NE,1).EQ.2) THEN
IF (IPRESS.EQ.1) NIN= 9
NTN= 25

END IF

C Coordinate coefficients

DO 31 N= 1,2




C
C Quadratic interpolation function (corners and midnodes)
C

A2 (N)= 4.*XG(CQ(NE,9),N)
B2(N)= 2.*XG(CQ(NE,4),N)-2,*XG(CQ(NE,8),N)
C2(N)= -2.*XG(CQ(NE, 2) ,N)+2.*XG(CQ(NE, 6) ,N)
* +XG(CQ(NE, 5) ,N})- XG(CQ(NE,7),N)
E2(N)= 2.*XG(CQ(NE,4),N)+2.*XG(CQ(NE, 8),N)
* -4.*XG(CQ(NE, 9) ,N)
F2(N)= 2.*XG(CQ(NE,2),N)+2.*XG(CQ(NE, 6),N)
* -4 .*XG(CQ(NE, 9),N)
* +XG{CQ(NE,5) ,N) - XG(CQ(NE, 7) ,N)
* -2.*XG(CQ(NE, 4) ,N)+2.*XG{CQ(NE, 8) ,N)
H2 (N)= -l.*XG(CQ(NE 1) N) - XG(CQ(NE, 3),N)
* +2.*XG(CQ(NE,2) N) 2.*XG(CQ(NE, 6) ,N)
P2(N)= XG(CQ(NE, 1) ,N)+ XG{CQ(NE,3},N)
* +XG(CQ(NE, 5) N} + XG{CQ(NE, 7),N)}
* -2.*XG(CQ(NE, 2) ,N}-2.*XG(CQ(NE, 4) ,N)
* -2.*XG(CQ(NE, 6) ,N}-2.*XG(CQ(NE, 8),N)
* +4.*XG(CQ(NE, 9) ,N)
C
31 CONTINUE
C
DO 30 R= 1,NPOINT
DO 30 S= 1,NPOINT
C
ET1l= XI(R,1)
ET2= XI(S,2)
C

C Coefficients used in Jacobian and derivative calculations
C
DO 38 P= 1,2
A(P)= B2(P)+D2(P)*ET2+2.*E2(P)*ET1+G2 (P) *ET2**2

* +2.*H2 (P) *ET1*ET2 +2.*P2(P)*ET1*ET2**2
B(P)= C2(P)+D2(P)*ET1+2.*F2(P)*ET2+H2 (P) *ET1**2
* +2.*G2 (P) *ET1*ET2 +2.*P2(P)*ET2*ET1**2

AD1(P)= 2.*(E2(P}+H2(P)*ET2+P2(P) *ET2**2)

AD2 (P)= D2(P)+2.*G2(P)*ET2+2.*H2(P) *ET1+4.*P2 (P) *ET1*ET2

BD1(P)= AD2(P)
BD2 (P)= 2.*(F2(P)+G2(P)*ET1+P2 (P) *ET1**2)
38 CONTINUE

C
C Jacobian determinant: quadratic variation
C
DETJQ= 0
DO 33 N= 1,2
DO 33 M= 1,2
IF (M.EQ.N) GCTO 33
DETJQ= EPS(M,N)/16.*A (M) *B(N)+DETJQ
33 CONTINUE
C
WRSJQ= W(R)*W(S)*DETJQ
C
C Inverse Jacobian tensor
C
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DO 34 I= 1,

DO 34 K=.1,
IF (I.EQ.
P= 2
SIGN= 1.
ELSE
P=1
SIGN= -1.

END IF

IF (K.EQ.1) THEN
JINV(I,K)= SIGN/4./DETJQ*B(P)

ELSE
JINV(I,K)= -1.*SIGN/4./DETJQ*A(P)
END IF
34 CONTINUE
C
C Coefficient Tensors
C
C Quadratic isoparametric functions only
C
DO 35 N= 1,NLNQ
DO 35 M= 1,NLNQ
C
EA (NE,N,M)= EA(NE,N, M)+ WRSJQ*PHIQ(N,ETl,ET2)*PHIQ(M,ET].,ETZ)
C
SI= 0.
DO 36 I= 1,2
36 SI=SI+DPDXQ (N, I,ET1,ET2,NE) *DPDXQ(M, I, ET1,ET2,NE)
EC(NE,N,M)= EC(NE,N,M)+ WRSJQO*SI
C
DO 35 I= 1,2
DO 37 J= 1,2
37 EQ(NE,N,J,M, I)= EQ(NE,N,J,M,I)+WRSJQ*DPDXQ(N,J,ET1,ET2,NE)*
> DPDXQ (M, I,ET1,ET2,NE)
DO 35 L= 1,NLNQ
C
EB(NE,N,L,M, I)= EB(NEINILIMI I)+
* WRSJQ*PHIQ(N,ET].,ETZ)*PHIQ(L,ETl,ETZ)*DPDXQ(M,I,ETl,ETZ,N'E)
C

35 CONTINUE

C 4th-order isoparametric functions only

IF (NTN.NE.9) THEN
DC 70 N= 1,NIN

DO 274 M= 1,NLNQ
IF (NTN.EQ.15) THEN
EA24V (ECL (NE, 2) ,M,N)= EA24V(ECL(NE,2) ,M,N)+
> WRSJQ*PHIQ (M, ET1, ET2) *PHI24 (N, ET1,ET2,NE)
ELSE
EA44V(ECL(NE, 2) ,M,N) = EA44V(ECL(NE,2),M,N)+
> WRSJQ*PHIQ(M,ET1,ET2} *PHI4 (N,ET1,ET2)
END IF
274 CONTINUE
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C

DO 70 M= 1,NTN

IF (NTN.EQ.15) THEN
EA24T(ECL(NE, 2) ,M,N) = EA24T(ECL(NE,2),M,N)+
> WRSJQ*PHI24 (M, ET1,ET2,NE) *PHI24 (N, ET1,ET2,NE)
ELSE
EA44T (ECL(NE, 2),M,N)= EA44T(ECL(NE,2),M,N)+
> WRSJQ*PHI4 (M, ET1,ET2) *PHI4 (N, ET1,ET2)
END IF

SI= 0.
IF (NTN.EQ.15) THEN
DO 71 I=1,2
71 SI=SI+DPDX24 (N, I,ET1,ET2,NE) *DPDX24 (M, I, ET1, ET2,NE)
EC24 (ECL(NE,2),N,M)= EC24(ECL(NE,2),N,M)+ WRSJQ*SI
ELSE
DO 72 I=1,2
72 SI=SI+DPDX4 (N, I,ET1,ET2,NE) *DPDX4 (M, I,ET1,ET2,NE)
EC44 (ECL(NE,2),N,M)= EC44 (ECL(NE,2),N,M)+ WRSJQ*SI
END IF

IF (NTN.EQ.15) THEN
DO 73 1I=1,2
DO 73 L= 1,NLNQ
73 EB24 (ECL(NE, 2) ,N,L,M, I)= EB24(ECL(NE,2),N,L,M,I)+
* WRSJQ*PHIZ24 (N, ET1,ET2,NE) *PHIQ(L,ET1,ET2) *
* DPDX24 (M, I,ET1,ET2,NE)
ELSE
DO 74 I=1,2
DO 74 L= 1,NLNQ
74 EB44 (ECL(NE, 2),N,L,M,I)= EB44 (ECL(NE,2),N,L,M, I)+
* WRSJQ*PHI4 (N,ET1,ET2)*PHIQ(L,ET1,ET2) *
* DPDX4 (M, I,ET1,ET2,NE)
END IF

70 CONTINUE
END IF

C Mixed quadratic and linear functions

C

DO 41 N= 1,NIN
DO 41 M= 1,NLNQ

DO 41 1=1,2

IF (ECL(NE,1).EQ.0) THEN
ED(ECL(NE,2},M,N, I)=ED(ECL(NE,2),M,N,I)+
* WRSJQ*PHIQ(M, ET1,ET2) *DPDXL(N, I,ET1,ET2,NE)
EF (ECL(NE, 2) ,N,M, I)=EF(ECL(NE,2),N,M, I}+
* WRSJQ*PHIL(N, ET1,ET2) *DPDXQ (M, I, ET1,ET2,NE)
ELSE IF (ECL(NE,1).EQ.1) THEN
IF (IPRESS.EQ.1) THEN
EDLQ (ECL(NE, 2} ,M,N, I)=EDIQ(ECL(NE, 2) ,M,N, I)+

* WRSJQ*PHIQ (M, ET1,ET2) *DPDXLQ(N, I, ET1,ET2,NE)
EFLIQ(ECL(NE, 2),N,M, I)=EFLQ(ECL(NE,2),N,M, I)+
* WRSJQ*PHILQ (N, ET1, ET2, NE) *DPDXQ (M, I,ET1, ET2,NE)

ELSE
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EDLQ (ECL(NE, 2) ,M,N, I)=EDLQ(ECL(NE, 2} ,M,N, I) +

* WRSJQ*PHIQ(M,ETI,ETZ)*DPDXL(N,I,ETl,ETz,NE)
EFI—'Q(ECL (NEI 2) INIMI I) =EFLQ(ECL(NE, 2) INIMI I)+

* WRSJQ*PHIL(N,ETl,ETZ)*DPDXQ(M,I,ETl,ETZ,NE)
END IF

ELSE

IF (IPRESS.EQ.1) THEN
EDQ(ECL(NE, 2),M,N, I)=EDQ(ECL(NE, 2) ,M,N, I} +

* WRSJQ*PHIQ (M, ET1,ET2) *DPDXQ (N, I, ET1,ET2,NE)
EFQ(ECL(NE, 2),N,M, I)=EFQ(ECL(NE, 2) ,N,M, I} +

* WRSJQ*PHIQ(N, ET1,ET2) *DPDXQ (M, I,ET1,ET2,NE)
ELSE
EDQ (ECL(NE, 2) ,M,N, I)=EDQ(ECL(NE, 2) ,M,N, I)+

* WRSJQ*PHIQ (M, ET1, ET2) *DPDXL (N, I, ET1,ET2,NE)
EFQ(ECL(NE, 2) ,N,M, I)=EFQ(ECL(NE,2) ,N,M, I)+

* WRSJQ*PHIL (N, ET1, ET2) *DPDXQ (M, I, ET1,ET2,NE)
END IF

END IF

DO 41 L= 1,NLNQ
DO 41 J= 1,2

IF (ECL(NE,1).EQ.0) THEN
EG(ECL(NE,Z) ,N,L, I'MIJ) =EG(ECL(NE12) INILIIIMIJ)+
WRSJQ*PHIL(N,ETI,ETZ)*DPDXQ(L,I,ETl,ETZ,NE)*
DPDXQ(M,J,ET1,ET2,NE)
EH(ECL(NE,Z),N,L,M,I,J):EH(ECL(NE,Z),N,L,M,I,J)+
WRSJQ*PHIL(N,ETl,ETZ)*PHIQ(L,ETI,ETZ)*
* DPDXDYQ(M,I,J,R,S,NE)}
ELSE IF (ECL(NE,1).EQ.1) THEN
IF (IPRESS.EQ.1) THEN

* %

*

EGLO(ECL(NE, 2),N, L, I,M,J)=EGLQ(ECL(NE,2),N,L,I,M,J)+

* WRSJQ*PHILQ (N, ET1,ET2,NE) *DPDXQ (L, I, ET1,ET2,NE} *
* DPDXQ (M, J,ET1,ET2,NE)

EHLQ (ECL(NE, 2) ,N,L,M, I,J)=EHLQ(ECL(NE, 2) ,N,L,M, I,J)+
* WRSJQ*PHILQ (N, ET1,ET2,NE) *PHIQ(L, ET1,ET2) *
* DPDXDYQ (M, I,J,R,S,NE)

ELSE

EGLQ (ECL(NE, 2) ,N, L, I,M,J)=EGLQ(ECL(NE, 2),N,L,I,M,J)+
* WRSJQ*PHIL (N, ET1,ET2) *DPDXQ(L, I,ET1,ET2,NE)*
* DPDXQ(M,J,ET1,ET2,NE)

EHLQ (ECL(NE, 2) ,N,L,M, I,J)=EHLQ(ECL(NE, 2) ,N,L,M, I,J)+
* WRSJQ*PHIL(N, ET1, ET2) *PHIQ({L,ET1,ET2) *
* DPDXDYQ (M, I,J,R,S,NE)

END IF
ELSE

IF (IPRESS.EQ.1) THEN

EGQ(ECL(NEI 2) ,N,L, IIMIJ)=EGQ(ECL(NEI2) INI L, IIMIJ)+

* WRSJQ*PHIQ(N,ET1,ET2) *DPDXQ(L, I,ET1,ET2,NE)*
DPDXQ (M, J,ET1,ET2,NE)

%

EHQ (ECL({NE, 2) ,N, L,M, I,J)=EHQ(ECL(NE, 2) ,N,L,M, I,J}+

* WRSJQ*PHIQ(N,ET1, ET2) *PHIQ(L,ET1,ET2)*
* DPDXDYQ(M, I,J,R,S,NE)
ELSE

EGQ(ECL(NE, 2) ,N,L, I,M,J)=EGQ(ECL(NE, 2} ,N,L,I,M,J)+
(

* WRSJQ*PHIL

,ET1,ET2)*DPDXQ(L, I,ET1,ET2,NE} *
* DPDXQ (M, J,ET1

ET2,NE)

EHQ (ECL(NE, 2) ,N,L,M, I,J)=EHQ(ECL(NE, 2) ,N,L,M, I,J)+



C

WRSJQ*PHIL(N,ET1,ET2) *PHIQ(L,ET1,ET2) *
DPDXDYQ(M, I,J,R,S,NE)
END IF

END IF

41 CONTINUE

DO 30 N= llNI_N
DO 30 M= 1,NLN

SI= 0.
DO 39 I= 1,2
IF (ECL(NE,1l).EQ.0) THEN
SI=SI+DPDXL(N, I,ET1,ET2,NE)*DPDXL(M,I,ET1,ET2,NE)
ELSE IF (ECL(NE,1l).EQ.1) THEN
IF (IPRESS.EQ.1) THEN
SI=SI+DPDXLQ(N,I,ETl,ETZ,NE)*DPDXLQ(M,I,ETl,ETz,NE)
ELSE
SI=SI+DPDXL(N, I,ET1,ET2,NE)*DPDXL{M, I,ET1,ET2, NE)
END IF
ELSE IF (ECL(NE,1l).EQ.2) THEN
IF (IPRESS.EQ.1) THEN
8I=SI+DPDXQ(N,I,ET1,ET2,NE) *DPDXQ(M, I,ET1,ET2,NE)

ELSE
SI=SI+DPDXL(N,I,ET1,ET2,NE) *DPDXL (M, I,ET1,ET2,NE)
END IF
END IF
39 CONTINUE
IF (ECL(NE,1).EQ.0) THEN
EE(ECL(NE, 2) ,N, M) =EE (ECL(NE, 2) ,N, M} +WRSJQ*SI
ELSE IF (ECL(NE,1).EQ.1) THEN
EELQ(ECL(NE, 2),N, M) =EELQ (ECL(NE, 2) ,N, M} +WRSJQ*SI
ELSE IF (ECL(NE,1l).EQ.2) THEN
EEQ(ECL(NE, 2) ,N, M)} =EEQ(ECL(NE, 2) ,N,M) +WRSJQ*SI
END IF
30 CONTINUE

C Pressure boundary tensor formulation

NE= 0
DO 50 NES= 1,NESURF(4)
NE= NE+1

Coordinate coefficients

DO 51 N= 1,2

C Quadratic interpolation function (corners and midnodes)

A2 (N)= 4.*XG(CQ(NE,9),N)
B2(N)= 2.*XG(CQ(NE,4),N)-2.*XG(CQ(NE, 8),N)
C2(N)= -2.*XG(CQ(NE,2),N)+2.*XG(CQ(NE, 6) ,N)
+XG(CQ(NE, 5) (N}-  XG(CQ(NE,7),N)
E2(N)= 2.*XG(CQ(NE,4),N)+2.*XG(CQ(NE, 8) ,N)
-4.*XG({CQ(NE, 9) ,N)
F2(N)= 2.*XG(CQ(NE,2),N})+2.*XG{CQ(NE, 6),N)
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* -4, *XG(CQ(NE, 9) ,N)
G2(N)= --1.*XG(CQ(NE, 1) ,N)+ XG(CQ(NE,3),N)

* +XG(CQ(NEI S)IN)— XG(CQ(NEI7)IN)
* -2.*XG(CQ(NE, 4) ,N}+2.*XG(CQ(NE, 8) ,N)

H2 (N)= -1.*XG(CQ(NE,1),N}- XG{CQ(NE, 3) ,N)
* +XG{CQ(NE,5) ,N}+ XG(CQ(NE,7) ,N)
* +2.*XG(CQ(NE, 2) ,N)-2.*XG(CQ(NE, 6) ,N)
* +XG(CQ(NE,5) ,N}+ XG(CQ(NE,7),N)
* -2.*XG(CQ(NE, 2) ,N)-2.*XG(CQ(NE, 4) ,N)
* -2.*XG(CQ(NE, 6),N})-2.*XG(CQ(NE, 8) ,N)

+4 . *XG(CQ(NE, 9) ,N)
51 CONTINUE
DO 50 S= 1,NPOINT

ET1= XI(S,1)
ET2= 1.

C Coefficients used in 2nd order Jacobian and derivative calculations

DO 53 P= 1,2 CheTIIiL . : o
A{P)= B2(P)+D2(P)*ET2+2.*E2(P) *ET1+G2 (P) *ET2**2

* +2.*H2 (P) *ET1*ET2 +2.*P2(P)*ET1*ET2**2
B(P)= C2(P)+D2(P)*ET1+2.*F2(P)*ET2+H2 (P) *ET1**2

* +2.%*G2 (P) *ET1*ET2 +2.*P2(P)*ET2*ET1**2
AD1(P)= 2.*(E2(P)+H2(P)*ET2+P2 (P) *ET2**2)
AD2 (P)= D2(P)+2.*G2(P)*ET2+2.*H2{P) *ET1+4.*P2 (P) *ET1*ET2
BD1(P)= AD2(P)
BD2(P)= 2.*{(F2(P)+G2(P)*ET1+P2 (P) *ET1**2)

53 CONTINUE

C Jacobian determinant: quadratic variation

DETJQ= 0.
DO 54 N= 1,2
DO 54 M= 1,2
IF (M.EQ.N) GOTO 54
DETJQ= EPS(M,N)/16.*A (M) *B(N)+DETJQ
54 CONTINUE

C Inverse Jacobian tensor

DO 55 I=1,2
DO 55 K= 1,2
IF (I.EQ.1l) THEN
P= 2
SIGN= 1.
ELSE
P=1
SIGN= -1.
END IF

IF (K.EQ.1) THEN

JINV(I,K)= SIGN/4./DETJQ*B(P)
ELSE

JINV(I,K)= -1.*SIGN/4./DETJQ*A(P)
END IF o
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55 CONTINUE

IF (NE.EQ.1.0R.NE.EQ.NESURF(4)) THEN
X= XI(S,1)
DO 59 N= 1,5
IF (N.EQ.1) THEN
FAC= 2.% (X**4-X**3- 25%X**2+ 25*X)
ELSE IF (N.EQ.2) THEN
FAC=-8.* (X**4- 5*X**3-X**2+ 5*X)
ELSE IF (N.EQ.3) THEN
FAC=12.* (X**4-1 25*X**24+ 25)
ELSE IF (N.EQ.4) THEN
FAC=~8.* (X**4+, S¥X**3-X**2- 5*¥X)
ELSE IF (N.EQ.5) THEN
FAC= 2.* (X**44X**3- 25*X**2- 25%X)
END IF
DO 59 M= 1,25
SAQ2 (ECL(NE, 2) ,N,M)= SAQ2(ECL(NE,2),N,M)+
> W(S) *FAC*DPDX4 (M, 1,ET1,ET2,NE} /6.
59 CONTINUE
END IF

DO 50 N= 1,3
IF (N.EQ.1l) FAC= XI(S,1)*(XI(S,1)-1.)
IF (N.EQ.2) FAC= -2.*(XI(S,1)**2-1.)
IF (N.EQ.3) FAC= XI(S,1)*(XI(S,1)+1.)
DO 50 M= 1,NLNQ

SAQ(NES,N,M)= SAQ(NES,N,M)+
> W(S) *FAC*DPDXQ(M, 1,ET1,ET2,NE} /4.
50 CONTINUE

RETURN
END

Function EPS

FUNCTION EPS(M,N)

Churkhkdkhhhkhkhkhkhhhkhkhkhkhhrhhkdhhkdhhrhkkdhhkhhkhhkhddhhkhddhbkddhdhdhhdhhhdhhdhhkdhkk

C 2-index permutation symbol. Outputs

C
C
C
C*

*

1 if m=1 and n=2

-1 if m=2 and n=1

0 if m=n
Akkhkhkkdkhhkhkhkhkhkhkhkhkhkkh bk bk kA A A A A A AR AR AR A AR AR A A A A AL A AT A A A Ak ok kd

IF (M.EQ.1.AND.N.EQ.2) THEN
A= 1,

ELSE IF (M.EQ.2.AND.N.EQ.1) THEN
A= -1,

ELSE
A= 0.

END IF

EPS= A

RETURN
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1. Function DPDXL

FUNCTION DPDXL (N, I,ET1,ET2,NE)

C***********************************************************************

C Calculates first order derivative of first order curved isoparameteric
C***********************************************************************

COMMON/VLIN/AL(2),B1(2),C1(2),D1(2),XINL(4,2),XINLQ(6,2,2),DETJL

COMMON/VQUAD/
* A2(2),B2(2),C2(2),D2(2),E2(2),F2(2),G2(2),H2(2),P2(2),
* XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),AD1(2),AD2(2),BD1(2),BD2(2)

REAL JINV

EN1= XINL(N,1)
EN2= XINL(N,2)

CN= .25
CN1= EN1+EN1*EN2*ET2
CN2= EN2+EN1*ENZ2*ET1

DPDXL= CN* (CN1*JINV(I,1)+CN2*JINV(I,2))

RETURN
END

J. Function DPDXLQ

FUNCTION DPDXIQ(N,I,ET1,ET2,NE)

C***********************************************************************

C Calculates first order derivative of second order isoparameteric function
C***********************************************************************

COMMON/VLIN/AL1(2),B1(2)},C1(2),D1(2),XINL(4,2),XINLQ(6,2,2),DETJL

COMMON/VQUAD/
* A2(2),B2(2),C2(2),D2(2),E2(2),F2(2),G2(2),H2(2),P2{2),
* XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),AD1(2),AD2(2),BD1(2),BD2(2)

COMMON/SURFTYPE/ NESURF (4)
REAL JINV

IF (NE.LE.NESURF(4))} THEN
ENl= XINLQ(N,1,2)
EN2= XINLQ(N,2,2)
IF (N.EQ.3.OR.N.EQ.6) THEN
CN= .5
CN1l= EN1*(1.-ET2**2)



CN2= -2,*ET2* (EN1*ET1+1.)
ELSE
CN= .25
CN1l= EN1* (ET2**2+ET2*ENZ)
CN2= (2.*ET2+EN2)* (EN1*ET1+1.)
END IF
ELSE
ENl= XINLQ(N,1,1)
EN2= XINLQ(N,2,1)
IF (N.EQ.2.0R.N.EQ.5} THEN
CN= .5
CN1l= -2.*ET1* (EN2*ET2+1.)
CN2= EN2* (1.-ET1**2)
ELSE
CN= .25
CN1= (2.*ET1+EN1)* (EN2*ET2+1.)
CN2= EN2* (ET1**2+ET1*EN1)
END IF
END IF

DPDXLQ= CN* (CN1*JINV(I,1)+CN2*JINV(I,2))

RETURN
END

K Function DPDXQ

FUNCTION DPDXQ(N, I,ET1,ET2,NE)

C***********************************************************************

C Calculates first order derivative of second order isoparameteric

C function
c***********************************************************************

COMMON/VQUAD/
* A2(2),B2(2),C2(2),D2(2),E2(2),F2(2),G2(2),H2(2),P2(2),
* XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),AD1(2),AD2(2),BD1(2),BD2(2)

REAL JINV

EN1= XINQ(N,1)
EN2= XINQ(le)

IF (N.EQ.S) THEN
CN= -2,
CN1l= ET1*(1.-ET2**2)
CN2= ET2*(1l.-ET1**2)
ELSE IF (N.EQ.2.0R.N.EQ.6) THEN
CN= EN2/2.
CNl= -2.*ET1*ET2* (EN2*ET2+1.)
CN2= {1.-ET1**2)*(2, *EN2*ET2+1.)
ELSE IF (N.EQ.4.0OR.N.EQ.8) THEN
CN= EN1/2.
CNil= (1.-ET2**2)*(2.*EN1*ET1+1.)
CN2= -2.*ET1*ET2* (EN1*ET1+1.)
ELSE

215



216

CN= EN1*EN2/4.
CNl= ET2* (1.+EN2*ET2)*(2.*EN1*ET1+1.)
CN2= ET1*(1.+EN1*ET1)*(2.*EN2*ET2+1.)

END IF
C

DPDXQ= CN* (CN1*JINV(I,1)+CN2*JINV(I,2))
C

RETURN

END

L. Function DPDX24

FUNCTION DPDX24 (N, I,ET1,ET2,NE)

C***********************************************************************

C Derivative of mixed 2nd/4th-order quadrilateral element

C***********************************************************************

COMMCN/VLIN/AL(2},B1(2),C1(2),D1(2),XINL(4,2),XINLQ{6,2,2),DETJL

COMMON/VQUAD/
* AZ(2),B2(2),C2(2),D2(2),E2(2),F2(2),G2(2),H2(2),P2(2),
* XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),AD1(2),AD2(2),BD1(2),BD2(2)

COMMON/SURFTYPE/ NESURF (4)
REAL JINV
IF (NE.LE.NESURF(4)) THEN

IF (N.EQ.1l) THEN
IGROUP= 1

C= .083333333333 !
ENl= -1.

EN2= -1.

ELSE IF (N.EQ.2) THEN
IGROUP= 2

C= .1666666666667 I = 1/6
ENl= 0.

ENZ2= -1,

ELSE IF (N.EQ.3) THEN
IGROUP= 1

C= ,083333333333 !
ENl= 1.

EN2= -1.

ELSE IF (N.EQ.4) THEN
IGROUP= 1
C=-1.333333333333 t = -8/6
ENl= 1. St

EN2= -.5

ELSE IF (N.EQ.5) THEN

IGROUP= 3

C= 2. V= 2
ENl= 1.

EN2= 0.

ELSE IF (N.EQ.6) THEN

1/12

1712

AL LI NN



i

IGROUP= 1

C=-1.333333333333

ENl= 1.

EN2= .5

FLSE IF (N.EQ.7) THEN
IGROUP= 1

Cc= .083333333333

ENl= 1.

FN2= 1.

ELSE IF (N.EQ.8) THEN
IGROUP= 2

C= .l1666666666667

EN1= O.

EN2= 1.

ELSE IF (N.EQ.9) THEN
IGROUP= 1

C= .083333333333

EN1= -1.

EN2= 1.

FILSE IF (N.EQ.10) THEN
IGROUP= 1
=-1,333333333333

EN1= -1.

EN2= .5

FLSE IF (N.EQ.11l) THEN
IGROUP= 3

C= 2. !
ENl= -1.
EN2= 0.

ELSE IF (N.EQ.12) THEN
IGROUP= 1

C=-1.333333333333

EN1l= -1.

EN2= -.5

EISE IF (N.EQ.13} THEN
IGROUP= 2
=-2.6666666666667

ENl1= O.

EN2= -.5

FELSE IF (N.EQ.14) THEN
IGROUP= 4

C= 4.
EN1l= 0.
EN2= O.

ELSE IF (N.EQ.15) THEN
IGROUP= 2
C=-2.6666666666667
EN1= O.

EN2= .5
END IF
ELSE
IF (N.EQ.1) THEN
IGROUP= 1
C= .08333333333333
EN1= -1.
= -1,

|
.

= -8/6

= 1/12

= 1/6

= 1/12

= -8/6

= -8/6

= -8/3

1 = 1/12
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ELSE IF (N.EQ.2) THEN

IGROUP= 1

C=-1.33333333333333 { = ~-8/6

ENl= -.5

ENZ2= -1,

ELSE IF (N.EQ.3) THEN

IGROUP= 3

C= 2, V= 2

ENl= 0.

EN2= -1.

ELSE IF (N.EQ.4) THEN

IGROUP= 1 =
C=-1.33333333333333 ' = -8/6
ENl= .5

EN2= -1.

ELSE IF (N.EQ.5) THEN

IGROUP= 1

C= .08333333333333 = 1/12
EN1= 1.

EN2= -1.

ELSE IF (N.EQ.6) THEN

IGROUP= 2

C= .16666666666667 t = -8/6
ENl= 1.

EN2= 0.

ELSE IF (N.EQ.7) THEN

IGROUP= 1

C= .08333333333333 A= 1712
ENl= 1.

EN2= 1.

ELSE IF (N.EQ.8) THEN

IGROUP= 1

C=-1.33333333333333 ' = -8/6
ENl= .5 =
EN2= 1. -
ELSE IF (N.EQ.9) THEN
IGROUP= 3

C= 2. V= 2
ENl= 0.

EN2= 1.

ELSE IF (N.EQ.10) THEN
IGROUP= 1
C=-1.33333333333333 !
ENl= -.5

EN2= 1,

ELSE IF (N.EQ.1ll) THEN
IGROUP= 1

C= .08333333333333 !
ENl= -1.

EN2= 1.

ELSE IF {(N.EQ.12) THEN
IGROUP= 2

C= .16666666666667 t'=1/6 -
EN1= -1.

EN2= 0. -
ELSE IF (N.EQ.13) THEN

IGROUP= 2 ==
C=-2.6666666666667 ' = -8/3 <

e

-8/6

i

1/12
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ENl= -.5

EN2= 0.

ELSE IF (N.EQ.14) THEN
IGROUP= 4

C= 4. 1 = 4
ENl= O.

EN2= 0.

ELSE IF (N.EQ.1l5) THEN
IGROUP= 2
C=-2.6666666666667 !
ENl= .5

EN2= 0.

END TIF

I

-8/3

END IF

IF (NE.LE.NESURF(4)) THEN
= EN2
= EN1

ETA= ET2

ETB= ET1

CJA= JINV(I,2)

CJB= JINV(I,1)

ENA= EN1

= EN2
ETA= ET1

= ET2
CJa= JINV(I,1)
CJB= JINV(I,2)
END IF

IF (IGROUP.EQ.1) THEN
CNA= (16.*ENA**2*ETA**3+ 12, *ENA**3*ETA**2- 2.*ETA- ENA)*

> (ETB**2+ ENB*ETB)
- = (4.*ENA**2*ETA**4+ 4. *ENA**3*ETA**3- ETA**2- ENA*ETA)*
> (2.*ETB+ ENB)

ELSE IF (IGROUP.EQ.2) THEN
= (16.*ENA**2*ETA**34+ 12, *ENA**3*ETA**2- 2,*ETA- ENA)*

> (1.- ETB**2)
= (4.*ENA**2*ETA**4+ 4, *ENA**3*ETA**3- ETA**2- ENA*ETA)*
> (-2.*ETB)

ELSE IF (IGROUP.EQ.3) THEN
= (4.*ETA**3- 2.5%ETA)*

> (ETB**2+ ENB*ETB)
CNB= (ETA**4- 1, 25*%ETA**2+ .25}%*
> (2.*ETB+ ENB)

ELSE IF (IGROUP.EQ.4) THEN
= (4.*ETA**3- 2 ,5*ETA)*(1l.- ETB**2)
CNB= (ETA**4- 1.25*ETA**2+ .25)*(-2.*ETB)

END IF
C

DPDX24= C* (CNA*CJA+CNB*CJB)
C

RETURN

END

END
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M. Function DPDX4

FUNCTION DPDX4 (N, I,ET1,ET2,NE)

C***********************************************************************

C Calculates first order derivative of fourth order isoparameteric

C function
C***********************************************************************

COMMON/VQUAD/
* A2(2),B2(2),C2(2),D2(2),E2(2),F2(2),G2(2),H2(2),P2(2),
* XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),AD1(2),AD2(2),BD1(2),BD2(2) ’

REAL JINV

IF (N.EQ.1l) THEN -
IGROUP= 1
C= .027777777778 !
ENl= -1.
EN2= -1.
ELSE IF (N.EQ.2) THEN
IGROUP= 1
= -.,444444444444 1 = -8/18
ENl= ~.5
EN2= -1.
ELSE IF (N.EQ.3) THEN
IGROUP= 2
C= .6666666666667 V= 2/3
ENl= 0.
EN2= -1.
ELSE IF (N.EQ.4) THEN
IGROUP= 1
C= -.444444444444 ! = -8/18
ENl= .5
EN2= -1.
ELSE IF (N.EQ.5) THEN
IGROUP= 1
C=  .027777777778 = 1/36
ENl= 1.
EN2= -1.
ELSE IF (N.EQ.6) THEN
IGROUP= 1
C= -.444444444444 ' = -8/18
ENl= 1. _
EN2= -.5
ELSE IF (N.EQ.7) THEN
IGROUP= 3
C= .6666666666667 V= 2/3 -
ENl= 1.
EN2= 0.
ELSE IF (N.EQ.8) THEN
IGROUP= 1 =
= -.444444444444 ! = -8/18 -
ENi= 1.
EN2= .5 _
ELSE IF (N.EQ.9) THEN

1/36
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IGROUP= 1
C= .027777777778 !
ENl= 1.
EN2= 1.
ELSE IF (N.EQ.10) THEN
IGROUP= 1
C= -.444444444444 I = -8/18
ENl= .5
EN2= 1.
ELSE IF (N.EQ.11l} THEN

IGROUP= 2
C= .6666666666667 ' = 2/3
ENl= O.
EN2= 1.
ELSE IF (N.EQ.12) THEN

IGROUP= 1
C= -.444444444444 ! = -8/18
ENl= -~-.5
EN2= 1.
ELSE IF (N.EQ.13) THEN
IGROUP= 1
C= .027777777778 !
ENl= -1.
EN2= 1.
ELSE IF (N.EQ.14) THEN
IGROUP= 1
C= -.444444444444 ! = -8/18
ENl= -1.
EN2= .5
ELSE IF (N.EQ.15) THEN

IGROUP= 3
C= .6666666666667 1 = 2/3
EN1= -1.
EN2= 0.
ELSE IF (N.EQ.16) THEN

IGROUP= 1
C= -.444444444444 I = -8/18
ENl= -1.
EN2= -.5
ELSE IF (N.EQ.l1l7) THEN
IGROUP= 1
C= 7.111111111111 !
ENl= -.5
EN2= -.5
ELSE IF (N.EQ.18) THEN
IGROUP= 2
C=-10.666666666667 ! = =32/3
ENl= 0.
ENZ2= ~-.5
ELSE IF (N.EQ.19) THEN

IGROUP= 1
C= 7.111111111111 | = 64/9
ENl= .5
EN2= -.5
ELSE IF (N.EQ.20) THEN

IGROUP= 3

=-10.666666666667 ! = -32/3
ENl= .5

1/36

I

1/36

64/9
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EN2= Q.

ELSE IF (N.EQ.21) THEN

IGROUP= 1

C= 7.111111111111 I = 64/9
ENl= .5

EN2= .5

ELSE IF (N.EQ.22) THEN

IGROUP= 2

C=-10.666666666667 I = -32/3
EN1= 0.

EN2= .5

ELSE IF (N.EQ.23) THEN
IGROUP= 1

C= 7.111111111111 !
EN1= -.5

EN2= .5

ELSE IF (N.EQ.24) THEN
IGROUP= 3
C=-10.666666666667 !
ENl= -.5

EN2= 0.

ELSE IF (N.EQ.25) THEN
IGROUP= 4

C= 16.

ENl= 0.

EN2= 0.

END IF

64/9

-32/3

IF (IGROUP.EQ.1) THEN
CNl= (16.*EN1**2*ET1**3+ 12 *EN1**3*ET1**2- 2 *ET1- EN1)*

> (4. *EN2**2*ET2*%*4+ 4. *¥EN2**3*ET2**3- ET2**2- EN2*ET2)
CN2= (4.*EN1**2*ET1**4+ 4, *EN1**3*ET1**3- ET1**2- EN1*ETI1)*
> (16, *EN2**2*ET2**3+ 12, *EN2**3*ET2**2~ 2, *ET2- EN2)

ELSE IF (IGROUP.EQ.Z2) THEN
CN1l= (4.*ET1**3- 2.5*ET1)*

> (4,*EN2**2*ET2**4+ 4, *EN2**3*ET2**3- ET2**2- EN2*ET2)
CN2= (ET1**4- 1.25*ET1**2+ .25)*
> (16, *EN2**2*ET2**3+ 12, ¥EN2**3*ET2**2- 2, *ET2- EN2)

ELSE IF (IGROUP.EQ.3) THEN
CN1= (16.*EN1**2*ET1**3+ 12.*EN1**3*ET1**2- 2 *ET1- EN1)*

> (ET2**4- 1.25*ET2**2+ ,25)
CN2= (4.*EN1**2*ET1**4+ 4, *EN1**3*ET1**3- ET1**2- EN1*ET1)*
> (4.*ET2**3- 2.5*ET2)

ELSE IF (IGROUP.EQ.4) THEN

CN1l= (4.*ET1**3- 2, 5*ET1)*

> (ET2**4- 1.25*ET2**2+ ,25)
CN2= (ET1**4- 1,.25*ET1**2+ .25)*
> (4. *ET2**3~ 2,5*ET2)

END IF

DPDX4= C* (CN1*JINV(I,1)+CN2*JINV(I,2))

RETURN
END

N. Function DPDXDYQ
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FUNCTION DPDXDYQ(N,I,J,NXI,NETA,NE)

C***********************************************************************

C Calculates second order derivative of second order isoparameteric
C function
C***********************************************************************
C

COMMON/VINTEG/XI{10,2),W(10)
C

COMMCN/VQUAD/

* A2(2),B2(2),C2(2),D2(2),E2(2),F2(2),G2(2),H2(2),P2(2),

* XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),AD1(2),AD2(2),BD1(2),BD2(2)

INTEGER P
REAL JINV

ENl= XINQ(N,1)
EN2= XINQ(N,2)
ET1= XI(NXI,1)
ET2= XI(NETA,?2)

IF (I.EQ.1) THEN
EIP= 1.

P= 2

ELSE
EIP= -1.

P=1

END IF

IF (N.EQ.9) THEN
CN= -2.
CN1l= ET1*(1.-ET2**2)
CN2= ET2*(1.-ET1**2)
DNl= 1,-ET2**2
DN2= -2, *ET1*ET2
DN3= DN2
DN4= 1.-ET1**2
ELSE IF (N.EQ.2.0R.N.EQ.6) THEN

CN= EN2/2.

CN1l= -2.*ET1*ET2* (EN2*ET2+1.)
CN2= (1.-ET1**2)*(2.*EN2*ET2+1.)
DN1= -2.*ET2* (EN2*ET2+1.)

DN2= -2.*ET1*(2.*EN2*ET2+1.)
DN3= IN2

DN4= 2,*EN2*(1.-ET1**2)

ELSE IF (N.EQ.4.0R.N.EQ.8) THEN

CN= EN1/2.

CN1l= (1.-ET2**2)}*(2.*EN1*ET1+1.)
CN2= -2.*ET1*ET2* (EN1*ET1+1.)
DN1l= 2.*EN1*(1,-ET2**2) ’
DN2= -2 ,*ET2* (2. *ENL*ET1+1.)

DN3= IN2
DN4= -2.*ET1* (EN1*ET1+1.)
ELSE

CN= EN1*ENZ/4.
CNl= ET2*(1.+EN2*ET2)*(2.*EN1*ET1+1.)
CN2= ET1*(1.+EN1*ET1)*(2.*EN2*ET2+1.)
DN1= 2, *EN1*ET2* (EN2*ET2+1.)
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DN2= (2.*EN1*ET1+1.)*(2.*EN2*ET2+1.)
DN3= IN2

DN4= 2.*EN2*ET1* (EN1*ET1+1.)

END IF

DPDXDYQ= EIP*CN/4./DETJQ*
* ((CN1*BD1(P)-CN2*AD1(P)+B(P)*DN1-A(P)*DN3)*JINV(J, 1)+
* (CN1*BD2(P)-CN2*AD2 (P)+B(P) *DN2-A(P) *DN4 ) *JINV(J, 2) )

RETURN
END

0. Function PHIL

FUNCTION PHIL(N,ETI1,ET2)

C***********************************************************************

C Linear isoparametric function for cquadrilateral element
C***********************************************************************

COMMON/VLIN/AL(2),B1(2),C1(2),D1(2),XINL(4,2),XINIQ(6,2,2),DETJL
PHIL= (1.+XINL(N,1)*ET1)*(1.+XINL(N,2)*ET2)/4.

RETURN
END

P. Function PHILQ

FUNCTION PHILQ(N,ET1,ET2,NE}

C***********************************************************************

C Second-order iscparametric function for quadrilateral element .
C***********************************************************************

COMMON/VLIN/AL1(2)},B1(2),C1(2),D1(2),XINL(4,2),XINILQ(6,2,2),DETJL

COMMON/VQUAD/
* A2(2),B2(2},C2(2),D2(2),E2(2),F2(2),G2(2) ,H2(2),P2(2),
* XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),AD1(2),AD2(2),BD1(2),BD2(2)

COMMON/ SURFTYPE/ NESURF (4)
REAL JINV

IF {NE.LE.NESURF(4)) THEN
EN1= XINLQ(N,1,2)
EN2= XINLQ(N,2,2)
IF (N.EQ.3.0R.N.EQ.6) THEN
X= .5*(1.-ET2**2)*(1.+EN1*ET1)
ELSE : o
X= .25*ET2* (ET2+EN2) * (EN1*ET1+1.)
END IF
ELSE

vy
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EN1l= XINLQ(N,1,1)
EN2= XINLQ(N,2,1)
IF (N.EQ.2.0OR.N.EQ.5) THEN

X= .5%(1.-ET1%*2)*(1.+EN2*ET2)
ELSE

X= .25%ET1* (ET1+EN1)* (EN2*ET2+1.)
END IF
END IF

PHILQ= X

RETURN
END

Q. Function PHIQ

FUNCTION PHIQ(N,ET1,ET2)

c***********************************************************************

C FUNCTION PHIQ

C Second-order isoparametric function for quadrilateral element
C***********************************************************************

COMMON/VQUAD/
+ A2(2),B2(2),C2(2),D2(2) ,E2(2) ,F2(2),G2(2) ,H2(2),P2(2),
* XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),AD1(2),AD2(2),BD1(2),BD2(2)

C
REAL JINV
c
EN1l= XINQ(N,1)
EN2= XINQ(N,2)
C
IF (N.EQ.9) THEN
X= (1.-ET1**2)*(1,-ET2**2)
FLSE IF (N.EQ.2.OR.N.EQ.6) THEN
K= .5%(1.-ET1**2)*EN2*ET2* (1.+EN2*ET2)
ELSE TF (N.EQ.4.0OR.N.EQ.8) THEN
X= .5%(1.-ET2**2)*EN1*ET1*(1.+EN1*ET1)
ELSE
X= .25% (1.+EN1*ET1)*(1.+EN2*ET2) *EN1*ET1*EN2*ET2
END IF
C
PHIQ= X
C
RETURN
END

R. Function PHI24

FUNCTION PHI24 (N,ET1,ET2,NE)

C***********************************************************************

C Fourth-order isoparametric function for quadrilateral element
C***********************************************************************
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COMMON/VLIN/Al(Z),B1(2),C1(2),Dl(2),XINL(4,2),XINLQ(6,2,2),DETJL

COMMON/VQUAD/ ’
r A2(2),B2(2),C2(2),D2(2),E2(2),F2(2),G2(2) ,H2(2),P2(2),
" XINQ(9,2),DETJQ, JINV(2,2),A(2),B(2),AD1(2),AD2(2) , BDL (2) ,BD2 (2)

COMMON/SURFTYPE/ NESURF (4)
REAL JINV
IF (NE.LE.NESURF(4)) THEN -

IF (N.EQ.1l) THEN -
IGROUP= 1

C= .083333333333 !
ENl= -1.

EN2= -1.

ELSE IF (N.EQ.2) THEN
IGROUP= 2

C= ,1666666666667 Y= 1/6 .
ENl= 0. =
EN2= -1.

ELSE IF (N.EQ.3)} THEN
IGROUP= 1

C= .083333333333 f
ENl= 1.

EN2= -1.

ELSE IF (N.EQ.4) THEN
IGROUP= 1
C=-1.333333333333 !
ENl= 1,

EN2= -.5

ELSE IF (N.EQ.5) THEN
IGROUP= 3

C= 2. = 2 _
EN1= 1.

EN2= 0.

ELSE IF (N.EQ.6) THEN =
IGROUP= 1 ’
C=-1.333333333333 !

ENl= 1.

EN2= .5

ELSE IF (N.EQ.7) THEN
IGROUP= 1

C=  ,083333333333 !
ENl= 1.

EN2= 1.

ELSE IF (N.EQ.8) THEN
IGROUP= 2

C= .1666666666667 = 1/6

ENl= 0.

EN2= 1,

ELSE IF (N.EQ.9) THEN

IGROUP= 1

C= .083333333333 = 1712

ENl= -1,

EN2= 1, =

1/12 =

1712

n

-8/6

-8/6 :

1712
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ELSE IF (N.EQ.10) THEN
IGROUP= 1
=-1.333333333333

ENl= -1.

EN2= .5

ELSE IF (N.EQ.11l) THEN
IGROUP= 3

C= 2. !
ENl= -1.
EN2= 0.

ELSE IF (N.EQ.12) THEN
IGROUP= 1
C=-1.333333333333

EN1l= -1.

EN2= -.5

ELSE IF (N.EQ.13) THEN
IGROUP= 2
C=-2.6666666666667
ENl= Q.

EN2= -.5

ELSE IF (N.EQ.14) THEN
IGROUP= 4

C= 4,
EN1l= 0.
EN2= 0.

ELSE IF (N.EQ.1l5) THEN
IGROUP= 2
C=-2.6666666666667
ENl= O.

EN2= .5

END IF

ELSE

IF (N.EQ.1l) THEN
IGROUP= 1

C= .08333333333333
ENl= -1.

EN2= ~1.

ELSE IF (N.EQ.2) THEN
IGROUP= 1
C=-1.33333333333333
ENl= -.5

EN2= -1,

ELSE IF (N.EQ.3) THEN
IGROUP= 3

C= 2.
EN1l= 0.
EN2= -1

ELSE IF (N.EQ.4) THEN
IGROUP= 1
C=-1.33333333333333
ENl= .5

EN2= -1.

ELSE IF (N.EQ.S5) THEN
IGROUP= 1

C= .08333333333333
ENl1= 1.

]

H

-8/6

-8/6

-8/3

-8/3

1/12

-8/6

-8/6

1712
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EN2= -1.

ELSE IF (N.EQ.6) THEN
IGROUP= 2

C= .l16666666666667
ENl1= 1.

EN2= 0.

ELSE IF (N.EQ.7) THEN
IGROUP= 1

C= .08333333333333
EN1l= 1.

ENZ2= 1.

ELSE IF (N.EQ.8) THEN
IGROUP= 1
C=-1.33333333333333
ENl= .5

EN2= 1.

ELSE IF (N.EQ.S8) THEN
IGROUP= 3

C= 2.
ENl= O.
ENZ2= 1.

EILSE IF (N.EQ.10) THEN
IGROUP= 1
C=-1.33333333333333
ENl= -.5

EN2= 1.

ELSE IF (N.EQ.11) THEN
IGROUP= 1

C= .08333333333333
ENl= -1.

EN2= 1.

ELSE IF (N.EQ.12) THEN
IGROUP= 2

C= .16666666666667
ENl= -1.

EN2= O.

ELSE IF (N.EQ.13) THEN
IGROUP= 2
C=-2.6666666666667
ENl= -.5

EN2= O.

FLSE IF (N.EQ.14) THEN
IGROUP= 4

C= 4.
EN1l= O.
EN2= O

ELSE IF (N.EQ.15) THEN
IGROUP= 2
C=-2.6666666666667
ENl= .5

EN2= 0.

END IF

END IF

1
H

H

IF (NE.LE.NESURF (4}) THEN

FNA= EN2
ENB= ENI1

1/6

1/12

-8/6

-8/6

1/12

1/6

-8/3

-8/3



ETA= ET2
ETB= ET1

ENA= EN1
= EN2
ETA= ET1
ETB= ET2
END IF

IF (IGROUP.EQ.1) THEN

X= C*(4.*ENA**2*ETA**4+ 4, *ENA**3*ETA**3- ETA**2- ENA*ETA)*
> (ETB**2+ ENB*ETB)

ELSE IF (IGROUP.EQ.2) THEN

X= C*(4.*ENA**2*ETA**4+ 4 *ENA**3I*ETA**3- ETA**2- ENA*ETA)*
> (1.- ETB**2)

ELSE IF (IGROUP.EQ.3) THEN

X= C* (ETA**4- 1.25%ETA**2+ ,25)%
> (ETB**2+ ENB*ETB)

ELSE IF (IGROUP.EQ.4) THEN

X= C*(ETA**4- 1.25%ETA**2+ ,25)*(1.- ETB**2)

END IF
C
PHI24= X
C
RETURN
END

S. Function PHI4

FUNCTION PHI4 (N,ET1,ET2)

(bR ARAEESEE AR S EES RS stasRsRti s tRRati sttt sttt et ssl s

C Fourth-order isoparametric function for quadrilateral element
C***********************************************************************

COMMON/VQUAD/
* A2(2),B2(2),C2(2),D2(2),E2(2),F2(2),G2(2),H2(2),P2(2),
* XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),AD1(2),AD2(2),BD1(2),BD2(2)

REAL JINV
C

IF (N.EQ.1l) THEN
IGROUP= 1
C= .027777777778 ' = 1/36
EN1l= -1.
EN2= -1.

ELSE IF (N.EQ.2) THEN
IGROUP= 1

= -.444444444444 ! = -8/18

ENl= -.5
EN2= -1,
ELSE IF (N.EQ.3) THEN

IGROUP= 2
C= .6666666666667 = 2/3
EN1= 0.
EN2= -1.

ELSE IF (N.EQ.4) THEN
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IGROUP= 1

C= -.444444444444 1 = -8/18
ENl= .5
EN2= -1.
ELSE IF (N.EQ.5) THEN
IGROUP= 1
C= .027777777778 I = 1/36
ENl= 1.
EN2= -1.
ELSE IF (N.EQ.6) THEN
IGROUP= 1
= -.,444444444444 1 = -8/18
EN1l= 1.
EN2= -.5
ELSE IF (N.EQ.7) THEN
: IGROUP= 3
C= .6666666666667 ' = 2/3
B ENl= 1.
_ EN2= 0.
_ ELSE IF (N.EQ.8) THEN
- IGROUP= 1
i C= -.444444444444 I = -8/18
- ENl= 1.
i EN2= .5
z ELSE IF (N.EQ.9) THEN
- IGROUP= 1
: C= .027777777778 vt = 1/36
ENl= 1.
B EN2= 1.
. ELSE IF (N.EQ.10) THEN
. IGROUP= 1
B = —-.444444444444 ' = -8/18
ENl= .5
EN2= 1.
ELSE IF (N.EQ.11) THEN
B IGROUP= 2
C= .6666666666667 1 = 2/3
EN1l= O.
EN2= 1.
ELSE IF (N.EQ.12) THEN
IGROUP= 1
= -.444444444444 \ = -8/18
EN1= -.5
EN2= 1.
ELSE IF (N.EQ.13) THEN
IGROUP= 1
C= .027777777778 I = 1/36
ENl1= -1.
EN2= 1.
ELSE IF (N.EQ.14) THEN
IGROUP= 1
= -.444444444444 1 = -8/18
EN1= -1.
EN2= .5
ELSE IF (N.EQ.15) THEN
IGROUP= 3
C= .6666666666667 V= 273
ENl= -1.
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EN2= 0.

ELSE IF (N.EQ.16) THEN
IGROUP= 1
C= -.444444444444
EN1= -1.
EN2= -.5

ELSE IF (N EQ.17) THEN
IGROUP=
c= 7. 111111111111
ENl= -.5
EN2= -.5

ELSE IF (N EQ.18) THEN
IGROUP= 2
C=-10.666666666667
EN1= O.
EN2= -.5

FLSE IF (N.EQ.19) THEN
IGROUP= 1
C= 7.111111111111
ENl= .5
EN2= -.5

FILSE IF (N.EQ.20) THEN
IGROUP= 3
C=-10.666666666667
ENl= .5
EN2= 0.

FLSE IF (N.EQ.21) THEN
IGROUP= 1
c= 7.111111111111
ENl= .5
EN2= .5

ELSE IF (N EQ.22) THEN
IGROUP= 2

=-10.666666666667

EN1= O.
EN2= .5

ELSE IF (N.EQ.23) THEN
IGRQUP= 1
Cc= 7.111111111111
ENl1l= -.5
EN2= .5

ELSE IF (N EQ.24) THEN
IGROUP= 3
C=-10.666666666667
ENl= -.5
EN2= 0.

FISE IF (N.EQ.25) THEN
IGROUP= 4
C= 16.
ENl= O.
EN2= 0.

END IF

IF (IGROUP.EQ.1) THEN

X= C*(4.*EN1**2*ET1**4+ 4.
(4.¥EN2**2¥ET2*%*4+ 4, *¥EN2**

I = -8/18

1 = 64/9

v = =32/3

1 = 64/9

1 = -32/3

1 = 64/9

1= =32/3

I = 64/9

1 = -32/3

ELSE IF (IGROUP.EQ.2) THEN
X= C* (ET1**4- 1.25*ET1**2+ .25)%

*EN1**3*ET1**3- ET1**2- EN1*ET1)*
3*ET2**3- ET2**2- EN2*ET2)
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> (4. *EN2**2*ET2%*4+ 4, *EN2**3*ET2+**3_ ET2**2- EN2*ET2)
ELSE IF (IGROUP.EQ.3) THEN

X= C*(4.*EN1**2*ET1**44 4, *EN1**3*ET1**3— ET1**2- EN1*ET1)*
> (ET2**4- 1,25%ET2**2; .25)
ELSE IF (IGROUP.EQ.4) THEN

X= C* (ET1**4- 1,25*ET1**24+ L25)*(ET2* %4~ 1 ,25%ET2**2 .25)
END IF
PHI4= X
RETURN
END

T. Subroutine GAUSS

SUBROUTINE GAUSS (N)

C***********************************************************************

C Solves for X matrix, where A*X=B, by applying Gauss-Jordan elimination
C***********************************************************************

PARAMETER (MXE= 25, MYE= 20) ! # elements in x & y dirs
PARAMETER (MTCl= (1+MXE)* (1+MYE)) ! # corner nodes

PARAMETER (MTC2= 2* (1+MYE)+1+MXE+2) ! extra nodes for mixed press
PARAMETER (MTC= MTC1l+MTC2) ! total # press nodes
COMMON/MXTRAN/

>AMAT(MTC,MTC),BVEC(MTC),XVEC(MTC)
C Forward Elimination

NM1= N-1
DO 1 I= 1,NM1
IPl= I+1
DO 1 J= IP1,N
C= AMAT(J,I)/AMAT(I,I)
DO 2 K= IP1,N
AMAT(J,K)= AMAT(J,K)- C*AMAT(I,K)

2 CONTINUE
BVEC(J)= BVEC(J)- C*BVEC(I)
1 CONTINUE

C Back elimination. Reduces A to the identity matrix,
C while B becomes the solution vector.

DO 10 I= 1,N
NMI= N-I+1
BVEC(NMI)= BVEC (NMI) /AMAT (NMI, NMI)
XVEC (NMI)= BVEC (NMI)
IF (NMI.EQ.1) GOTO 20
NM1= NMI-1
DO 10 J= 1,NM1
NMJ= NMI-J
BVEC (NMJ) = BVEC(NMJ)—AMAT(NMJ,NMI)*BVEC(NMI)
10 CONTINUE —
20 CONTINUE
C
RETURN
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U. Subroutine MENISCUS

SUBROUTINE MENISCUS (CANG,BO,CA,MA,PR,BI,RS, PREF,RASPECT, PVAP,
> YREF, CR, FRHO, VREC, NINT, NPRINT, ISYMM, ICURVE, ITYPE,
> IPRESS)

C***********************************************************************

C Solves for both sides of meniscus between two parallel plates
C***********************************************************************

IMPLICIT DOUBLE PRECISION (A-H)
IMPLICIT DOUBLE PRECISION (0O-Z)

PARAMETER (MXE= 25, MYE= 20) ! # elements in x & y direcs
PARAMETER (MXN= 1+2*MXE) ! # nodes in x-direction
COMMON/MENVAR/

* A(3,MXE),B(3,MXE),C(3,MXE),AP(2),AQ(2)

COMMON/ SURFACE/
*XP (MXN) , YP (MXN) , YSURF(Q (MXN) , PD (MXN) , PB(MXN)} , TEMP (MXN) ,
* SURFNN (MXN, 2} , SURFNT (MXN, 2)

COMMON/ PLOT/
*IMODE, TOUT8, IOUTY

DOUBLE PRECISION MA

DATA TOLL,TOLA/.0001,.00001/ ! Length and angle conv tolerances

DATA MAXSIT/100000/ ! Maximum number of s iterations

DATA MAXNEWT/300/ ! Maximum number of N-R iterations
DATA MAXEND/300/ ! Maximum number of endpoint its

DATA MAXANG/300/

DATA IMETHOD/1/ ! Sol method.=0 secant/=1 biscection

DATA E/2.718281828/

ANGOB= 1.5707963-CANG/57.2957795
DELS= 1./DBLE (REAL(NINT) )

C Surface scalar interpolation coefficients. 2nd order for temperature.
C 1lst order for pressure when IPRESS=0 and 2nd order in corners when
C IPRESS=1 (or P=Ax2+Bx+C)

NE= 0
DO 10 N= 3,NPRINT,2
NE= NE+1
Nl= N
N2= N-1
N3= N-2
X1l= XP(N1)
X2= XP(N2)
X3= XP(N3)
DO 10 K= 1,2
IF (K.EQ.l1l) THEN
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VAR1= PD(N1)
VAR2= PD{N2)
VAR3= PD({N3)
IF (NE.EQ.1.OR.NE.EQ. (NPRINT-1)/2.AND.IPRESS.EQ.1) THEN
A(K,NE) = ( (VAR1-VAR2) / (X1-X2) - (VAR2-VAR3) / (X2-X3) ) / (X1-X3)
B(K,NE):(VARl—VARZ)/(Xl—XZ)—A(K,NE)*(X1+X2)
C(K,NE)=VAR1-A(K,NE} *X1**2-B(K,NE) *X1
ELSE
A({K,NE)=0.
B(K,NE) = (VAR1-VAR3) / {X1-X3)
C(K,NE) =VAR1-B(K,NE) *X1
END IF
ELSE IF (K.EQ.2) THEN
VAR1= TEMP(N1)
VAR2= TEMP(N2)
VAR3= TEMP(N3)
A(K,NE)= ((VARL-VAR2)/(X1-X2)-(VAR2-VAR3)/(X2-X3))/ {(X1-X3)
B(K,NE)= (VAR1-VAR2)/(X1-X2)-A(K,NE)*(X1+X2)
C(K,NE)= VAR1-A(K,NE)*X1**2-B(K,NE) *X1
END IF
10 CONTINUE

C Check if exponential temperature approximation necessary for end
C surface elements

DO 20 N= 1,2
AP(N})= 0.
IF (N.EQ.1) THEN
Xl= XP{(3)
_ X2= XP(2)
X3= XP(1)
V1= TEMP(3)
V2= TEMP(2)
V3= TEMP(1)
NE= 1
NEQ= 2
) ELSE
— X1= XP(NPRINT-2)
' X2= XP(NPRINT-1)
X3= XP(NPRINT)
V1= TEMP(NPRINT-2)
V2= TEMP{(NPRINT-1)
V3= TEMP (NPRINT)
NE= (NPRINT-1)/2
NEO= NE-1
END IF
DEL= X3-X1
DxX= DEL/100.
FMIN= A{2,NE)*X1**2+B(2,NE)*X1+C(2,NE)
FMID= A{2,NE)*X2**2+B(2,NE) *X2+C (2,NE}
FMAX= A(2,NE}*X3**2+B(2,NE) *X3+C(2,NE})

XT= X1
DO 21 K= 2,100
XT= XT+DX
F= A{2,NE)*XT**2+B{2,NE) *XT+C(2,NE)
IF ((XT-X1)/DEL.LE.(0.5) THEN
IF (ITYPE.EQ.0)} THEN
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IF (F.LT.FMIN.OR.F.GT.FMID) GOTO 22
ELSE
IF (F.GT.FM]I\I.OR.F.LT.FMID) GOTO 22
END IF
ELSE
IF (ITYPE.EQ.0) THEN
IF (F.LT.FMID.OR.F.GT.FMAX) GOTO 22
ELSE
IF (F.GT.FMID.OR.F.LT.FMAX) GOTO 22
END IF
END IF
21  CONTINUE
GOTO 20
22  CONTINUE

AP(N)= .5
IF (N.EQ.1l) THEN
Xa= 1.-X1
XB= 1.-X2
XC= 1.-X3
ELSE
Xa= X1
XB= X2
XC= X3
END IF
IF (ITYPE.EQ.1) THEN
Vvi= 1.-V1
v2= 1.-V2
V3= 1.-V3
AP(N)= 1.
END IF
VOMAX= V1
VOMIN= VOMAX
DELvV= .001
DO 23 K= 1,100000
VOMIN= VOMIN-DELV
FX= FUNC2 (VOMIN,XA,XB,XC,V1,v2,V3)
IF (FX.GT.0.) GOTO 24
23 CONTINUE
STOP
24 CONTINUE
v0= VOMIN
DO 25 K= 1,10000
VvV00= VO
v0= (VOMIN+VOMAX)/2.
FX= FUNC2 (VO,XA,XB,XC,V].,VZ,W)
IF (FX.LE.0.) THEN
VOMAX= VO
ELSE
VOMIN= VO
END IF
IF (ABS((V0-v00)/v00).LE..00001) GOTO 26
25 CONTINUE
STOP
26 CONTINUE

X0= XC*DLOG (V2-V0) -XB*DLOG (V3-V0)
X0= X0/ (DLOG(V2-V0) -DLOG (V3-V0))
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COEFF= QLOG (V3-V0)/ (XC-X0)
C(2,NE)= VO
IF (N.EQ.l) THEN
A(2,NE)= -1.*COEFF
B(2,NE)= -1.*(X0-1.)

ELSE
A(2,NE)= COEFF
B(2,NE)= X0
END IF
20 CONTINUE

C Check if exponential press fit necessary for end surface elements

IF (IPRESS.EQ.1.AND.ICURVE.NE.Q) THEN
DO 30 N= 1,2
AQ(N)= 0.
IF (N.EQ.l) THEN
X1= XP(3)
X2= XP(2)
X3= XP(1)
V1= PD(3)
V2= PD(2)
V3= PD(1)
NE= 1
NEQO= 2
ELSE
X1= XP{(NPRINT-2)
X2= XP{NPRINT-1)
X3= XP(NPRINT)
V1= PD(NPRINT-2)
V2= PD{NPRINT-1)
V3= PD(NPRINT)
NE= (NPRINT-1)/2
NEQ= NE-1
END IF
DEL= X3-X1
DX= DEL/100.
FMIN= A(1,NE)*X1**2+B(1,NE)*X1+C(1,NE)
FMID= A(l,NE)*X2**2+B(1,NE) *X2+C(1,NE)
FMAX= A(1,NE)*X3**2+B(1,NE)*X3+C(1,NE}
IF (FMAX.LT.FMID.AND.FMID.GE.FMIN) GOTO 30
IF (FMAX.GT.FMID.AND.FMID.LE.FMIN) GOTO 30

XT= X1
DO 31 K= 2,100
XT= XT+DX
F= A(1,NE)*XT**2+B(1,NE)*XT+C(1,NE}
IF ((XT-X1)/DEL.LE.0.5) THEN
IF (ITYPE.EQ.1l) THEN
IF (F.LT.FMIN) GOTO 32 ! Cond
ELSE
IF (F.GT.FMIN) GOTO 32 ! Evap
END IF
END IF
31 CONTINUE
GOTO 30
32 CONTINUE
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AQ(N)= .5
IF (N.EQ.1l) THEN
Xa= 1.-X1
XB= 1.-X2
i XC= 1.-X3
; ELSE
XA= X1
XB= X2
XC= X3
END IF
H IF (ITYPE.EQ.Q) THEN
i Vi= -1.*V1
V2= -1.*V2
V3= -1.*V3
AQ(N)= 1.
END IF
VOMAX= V1
VOMIN= VOMAX
DELV= .001
DO 33 K= 1,10000000
VOMIN= VOMIN-DELV
F¥X= FUNC2 (VOMIN,XA,XB,XC,V1,v2,V3)
IF {(FX.GT.0.) GOTO 34
33 CONTINUE
STOP
34 CONTINUE
) V0= VOMIN
= DO 35 K= 1,10000000
v00= VO
V0= (VOMIN+VOMAX)/2.
FX= FUNC2(V0,XA,XB,XC,V1,v2,V3)
IF (FX.LE.(0.) THEN
VOMAX= VO
ELSE
VOMIN= VO
END IF
IF (ABS((V0-v00)/V00).LE..0000001) GOTO 36
35 CONTINUE
STOP
36 CONTINUE

q X0= XC*DLOG (V2-V0) -XB*DLOG (V3-V0)
X0= X0/ (DLOG(V2-V0)-DLOG(V3-V0))
COEFF= DLOG(V3-V0)/ (XC-X0)

] C(1,NE)= VO

IF (N.EQ.1) THEN

i A(1,NE)= -1.*COEFF

: B{(1,NE})= -1.*(X0-1.)
ELSE

o A(l1,NE)= COEFF

B(1,NE)= X0

B END IF

: 30 CONTINUE
END IF

- C Max curvature point variance iteration loop
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C Max

XM= 0.5

XP{(NPRINT+1)/2)= .5

XLR= 0.
XOBJ= .5
ANGLIM= 0.

DO 210 NPASS= 1,20

IF (ITYPE.

FTEMP= FUNC (XM, 2, NPRINT)
ELSE IF (ITYPE.EQ.l) THEN
FTEMP= FUNC (XM, 2, NPRINT) -1.

END IF

and min curvature calculations

EQ.0) THEN

IF (ICURVE.EQ.0) THEN

TMIN= O

! Bo only

TMAX= 2.*DCOS (CANG/57.2957795)
! Bo and P4

ELSE IF (ICURVE.EQ.l) THEN
TMIN= CA*FUNC (XM, 1,NPRINT)
2.*DCOS(CANG/57.2357795) +TMIN
ELSE IF (ICURVE.EQ.2) THEN
TMIN= -1.*VREC*FTEMP**2
2.*DCOS(CANG/57.2957795) +TMIN
ELSE IF (ICURVE.EQ.3) THEN

TMAX

:

TMIN= 0

! Bo and Vr

! Bo and Cr

TMAX= 2.*DCOS (CANG/57.2957795) *
(1.-CR*FUNC (XM, 2, NPRINT) ) +TMIN

>

ELSE IF (ICURVE.EQ.4) THEN
TMIN= CA*FUNC (XM, 1, NPRINT)

>

-VREC*FTEMP* *2

! Bo,

Pd and Vr

TMAX= 2.*DCOS(CANG/57.2957795)+TMIN

ELSE IF (ICURVE.EQ.S5) THEN
TMIN= CA*FUNC (XM, 1, NPRINT)
2.*DCOS (CANG/57.2957795) *

%

>

ELSE IF (ICURVE.EQ.6) THEN
TMIN= -1.*VREC*FTEMP**2

! Bo,

Pd and Cr

(1.-CR*FUNC (XM, 2, NPRINT) ) +TMIN

! Bo,

TMAX= 2.*DCOS(CANG/57.2957795) *
(1.-CR*FUNC (XM, 2, NPRINT) ) +TMIN

>

ELSE IF (ICURVE.EQ.7) THEN
TMIN= CA*FUNC (XM, 1, NPRINT)

>

~VREC*FTEMP* *2

! Bo,

TMAX= 2.*DCOS(CANG/57.2957795)*
(1.-CR*FUNC (XM, 2, NPRINT) ) +TMIN

>
END IF

T0= TMAX
Tl= TMIN

IF (NPASS.GE.2) THEN

IF (ICLOSE.EQ.1) THEN

Vr and Cr

Pd, Vr and Cr

IF (NPASS.EQ.2) ANGLIM= -1.5707963
TMAX= (1.+.1*REAL(NPASS-1))*TMAX
TO0= TMAX ST

ELSE

IF (NPASS.EQ.2) ANGLIM= 1.5707963

e
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FAC= 1.+.1*REAL(NPASS-2)
TMIN= (1.+.1*REAL(NPASS-1))*(1. +1.2*FAC) *TMIN-1.2*FAC*TMAX
Tl= TMIN
END IF
END IF

Xa= XM
XB= 0.

IF (NPASS.EQ.1.0R. (NPASS.GE.2.AND.ICLOSE.EQ. 1)) THEN

CALL CURVE
> (XA,XB,ANGOB,ANGWMAX,DELS,XLL,XPL,TMAX,BO,CA,MA,PR,BI,RS,
> PVAP, CR, FRHO, VREC, NPRINT, ICURVE, ITYPE)

IF (IMODE.EQ.1) WRITE (6, 1000)NPASS, XLL, T, TMAX, TMAX, ANGWMAX
>*57.2957795, (1.5707963-ANGWMAX) *57.2957795

IF (IOUT8.GE.2) WRITE (8, 1000)NPASS, XTOT, T, TMAX, TMAX, ANGWMAX
>*57.2957795, (1.5707963-ANGWMAX) *57.2957795

END IF

IF (NPASS.EQ.1.OR. (NPASS.GE.2.AND.ICLOSE.EQ. 0)) THEN

CALL CURVE
> (XA, XB,ANGOB, ANGWMIN, DELS, XLL, XPL, TMIN, BO, CA, MA, PR,BI,RS,
> PVAP, CR, FRHO, VREC, NPRINT, ICURVE, ITYPE)

IF (IMODE.EQ.1) WRITE(6,1000)NPASS, XLL, T, TMIN, TMIN, ANGWMIN
>*57.2957795, (1.5707963-ANGWMIN) *57.2957795

IF (IOUT8.GE.2) WRITE (8, 1000)NPASS, XTOT, T, TMIN, TMIN, ANGWMIN
>*57.2957795, (1.5707963-ANGWMIN) *57.2957795

END IF

IF (ANGOB.GT.ANGWMAX) THEN
ICIOSE= 1 ! Middle bulge down
ELSE IF (ANGOB.LT.ANGWMIN) THEN
ICLOSE= 0 ! Middle bulge up
ELSE
GOTO 205
END IF

210 CONTINUE
STOP
205 CONTINUE

NITTER= O
DO 200 J= 1,25

T= (TO+T1)/2.
ANGW01= ANGW

C Left hand side of meniscus
XaA= XM
XB= 0.
CALL CURVE
> (XA,XB,ANGOB,ANGW,DELS,XLL,XPL,T,BO,CA,MA,PR,BI,RS,PVAP,CR,
> FRHO, VREC,NPRINT, ICURVE, ITYPE)

XTOT= XLR+XLL
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C Check length

IF (IMODE.EQ.1) WRITE(6,1000)J,XTOT, T, TMIN, TMAX, ANGW
> *57.2957795, (1.5707963-ANGW) *57.2957795

IF (IOUT8.GE.2) WRITE(8,1000)J,XTOT, T, TMIN, TMAX, ANGW
> *57.2957795, (1.5707963-ANGW) *57.2957795

IF (NPASS.GE.2) THEN
IF (ICLOSE.EQ.1l) THEN. . S
IF (ANGW.LT.1.5707963.AND.ANGW.GT.ANGLIM) ANGLIM= ANGW
ELSE IF (ICLOSE.EQ.0) THEN
IF (ANGW.GT.-1.5707963.AND.ANGW.LT.ANGLIM) ANGLIM= ANGW
END IF
END IF

C Curvature correction

200
201

300

510

511

520

IF (DABS{ANGW-ANGOB).LE.TOLL) GOTO 300

IF (ANGW.LT.ANGOB.OR.ANGW.LE.-1,57,07963) THEN
Ti=T

ELSE IF (ANGW.GT.ANGOB.OR.ANGW.GE.1.5707963) THEN
TO0= T

END IF

IF (NITTER.GE.8) GOTO 201

CONTINUE
CONTINUE

IF (ICLOSE.EQ.l) THEN

IF (IMODE.EQ.1l) WRITE(6,2000)ANGLIM*57.2957795
IF (IOUT8.GE.2) WRITE(8,2000)ANGLIM*57.2957795
ELSE

IF (IMODE.EQ.1l) WRITE(6,2001)ANGLIM*57.2957795
IF (IOUT8.GE.2) WRITE(8,2001)ANGLIM*57.2957795
END IF

CONTINUE
Y0= RASPECT-YP{1)

DX= XP(2)}-XP(1)
DO 510 K= 1,NPRINT
YP(K)= YP(K)+Y0
N= K
IF (DABS(XP(K)-.5).LE..1*DX) GOTO 511
CONTINUE
CONTINUE
DC 520 KK= N+1,NPRINT
YP(KK)= YP{NPRINT+1-KK)
PD(KK)= PD{NPRINT+1-KK)
PB(KK)= PB(NPRINT+1-KK)
TEMP (KK} = TEMP (NPRINT+1-KK)
SURFNN (KK, 1)= -1.*SURFNN (NPRINT+1-KK, 1)
SURFNN (KK, 2) = SURFNN (NPRINT+1-KK, 2)
SURFNT (KK, 1) = SURFNT (NPRINT+1-KK, 1)
SURFNT (KK, 2) = -1.*SURFNT (NPRINT+1-KK, 2)
CONTINUE



YREF= YP(1)

1000 FORMAT(/,' CURV ITERATION # (J)= 1, 13%, 13,7,

* ' Calced Length= ', F16.10,/,
* ¢ T= ', F16.10,/,
* ' Tmin= ', F16.10,/,
* ' Tmax= ',F16.10,/,
* ' Contour Angle= ' ,F16.10,/,
* ' Contact Angle= v ,F16.10)

2000 FORMAT(,
>

>

RETURN
END

V. Subroutine CURVE

SUBROUTINE CURVE

* Meniscus curvature failed to maximize to desired',/,
' contact angle. Maximum angle reached= ', E12.6)
2001 FORMAT (' Meniscus curvature failed to minimize to desired',/.

contact angle. Minimum angle reached= ',E12.6)

> (XA,XB,ANGOB,ANGW,DELS,XLENGTH,XREAL,T,BO,CA,MA,PR,BI,RS,
> PVAP,CR,FRHO,VREC,NPRINT,ICURVE,ITYPE)

IMPLICIT DOUBLE
IMPLICIT DOUBLE

PARAMETER (MXE=
PARAMETER (MXN=

COMMON/MENVAR/

PRECISION (A-H)
PRECISION (O-Z)

25,
1+2*MXE)

MYE= 20)

| # elements in x & y direcs
| # nodes in x-direction

* A(3,MME),B(3,MXE),C(3,MXE),AP(2),AQ(2)

COMMON/ SURFACE/

*XP(MXN),YP(MXN),YSURFO(MXN),PD(MXN),PB(MXN),TEMP(MXN),
* SURFNN (MXN, 2 ) , SURFNT (MXN, 2)

COMMON/ PLOT/

*IMODE, IOUT8, IOUT9

DOUBLE PRECISION MA

DATA MAXS,MAXA,MAXL,IERROR/4000000,300,300,0/
DATA TOLL,TOLA/.00001,.0000001/

IF (XA.LT.XB) THEN

FAC= 1.

TJFAC= 1

XOBJ= 1.
ELSE

FAC= -1.

IFAC= -1

XOBJ= 0.
END IF

DO 10 N= 1,NPRINT
IF (XP(N).EQ.XA) THEN
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YP(N)= 0.

SURFNN(N, 1)= 0.
SURFNN(N,2)= 1.
SURFNT(N,1)= 1.
SURFNT (N, 2)= 0.
IF (FAC.GT.0.) THEN
NFLAG= N+1
ELSE
NFLAG= N-1
END IF
GOTO 11

ELSE IF (XP(N).GT.XA) THEN
IF {(FAC.GT.0.) THEN
NFLAG= N
ELSE
NFLAG= N-1
END IF
GOTO 11
END IF

10 CONTINUE
11 CONTINUE

NMID= N

Sl= 0.

S0= 0.

SM= 0.

SM1= 0.

X1= 0.

XREAL= XA

Yl= 0.

ALPH1= 0. ! Angle at 1
ALPHO= 0. ! Angle at 1
ALPHM= 0. ! Angle at i-
ALPNHM1= 0. ! Angle at 1

DO 100 N= 2,MAXS
S2= S1+DELS
ALPH2= ALPH1

XREAL]l= XREAL
XREALO= XREAL1

DO 110 L= 1,MAXL

IF (ITYPE.EQ.0) THEN

FTEMP= FUNC (XREAL1, 2,NPRINT)
ELSE IF (ITYPE.EQ.1l) THEN

FTEMP= FUNC (XREAL1,2,NPRINT) -1,
END IF

IF (ICURVE.EQ.0) THEN ! Bo only
CON1l= T+BO*Y1
CON2= 1.
ELSE IF (ICURVE.EQ.1l) THEN ! Bo and Pd

CON1=T+BO*Y1-CA*FUNC (XREAL1, 1, NPRINT)
CON2=1
ELSE IF (ICURVE.EQ.2) THEN ! Bo and Vr
CON1= T+BO*Y1+VREC*FTEMP**2

vy
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canz= 1.

ELSE IF (ICURVE.EQ.3) THEN ! Bo and Cr
CON1l= T+BO*Y1l

CON2= 1.-CR*FUNC (XREALI1, 2,NPRINT)

ELSE IF (ICURVE.EQ.4) THEN ! Bo, Pd and Vr
CON1= T+BO*Y1-CA*FUNC (XREALL, 1,NPRINT)

> +VREC*FTEMP**2
CoN2= 1.

ELSE IF (ICURVE.EQ.5) THEN ! Bo, Pd and Cr

CON1=T+BO*Y1-CA*FUNC (XREAL1l, 1,NPRINT)
CON2= 1.-CR*FUNC (XREAL], 2, NPRINT)

ELSE IF (ICURVE.EQ.6) THEN ! Bo, Vr and Cr
CON1= T+BO*Y1+VREC*FTEMP**2
CON2= 1.-CR*FUNC (XREALI1, 2, NPRINT)

ELSE IF (ICURVE.EQ.7) THEN ! Bo, Pd, Vr and Cr
CON1l= T+BO*Y1-CA*FUNC (XREAL1, 1,NPRINT)

> +VREC*FTEMP* *2
CON2= 1.-CR*FUNC (XREAL1, 2,NPRINT)

END IF

IF (N.EQ.2.AND.L.EQ.1) THEN
RC1l= CON1/CON2
IF (XP(NMID).EQ.XA) PB{(NMID)= .5/DSIN(ANGOB)*
{ (1.-CR*FUNC (XP (NMID), 2,NPRINT) ) *RC1+VREC*FTEMP**2)
END IF
ANGNEW= 0.
DO 120 M= 1,MAXA
IF (N.EQ.2) THEN
ANGNEW= ALPH1+ (CON1*DELS+BO* (DSIN (ALPH1)+DSIN(ALPH2) )
> /2.*DELS**2) /CON2
ELSE
ANG= (3.*ALPH2+6.*ALPH1-ALPHO)/8.
ANGNEW= (4.*ALPH1-ALPHO)/3.+

v

> (2.*CON1*DELS+BO*DELS**2 /3, *
> (DSIN(ALPH1)+4.*DSIN(ANG)+DSIN(ALPH2)) )/
> 3./CON2

END IF

IF (DABS(ANGNEW-ALPHZ) .LE.TOLA)} GOTO 130
ALPH2= ANGNEW
120 CONTINUE

IERROR= 1
IF (IOUT8.NE.O) WRITE(8,1000)
IF (IMCDE.EQ.1l) WRITE(6,1000)
1000 FORMAT (' ANGLE ITERATION DID NOT CONVERGE')
IF (IERROR.EQ.1) GOTO 9999

130 CONTINUE
IF (ANGNEW.LE..O001.AND.N.EQ.2) THEN
ANGNEW= (ALPH1* (CON2+B0O/2.*DELS**2)+CON1*DELS) /
> (CON2-BO/2.*DELS**2)
ELSE IF (ANGNEW.LE..001.AND.N.NE.2) THEN
ANGNEW= 4.*ALPH1-ALPHO+BO*DELS**2/6./CON2*
> (8.*ALPH1-ALPHO) +2 . *CON1*DELS/CON2
ANGNEW= ANGNEW/ (3.-5.*BO*DELS**2/6./CON2)
END IF
ALPH2= ANGNEW
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110

1001

140

X2
Y2

IF

IF (N.EQ.2) THEN
XNEN= X1+ {(DCOS(ALPH1)+DCOS(ALPH2))}/2.*DELS
YNEW= Y1+ (DSIN{ALPH1)+DSIN(ALPH2})/2.*DELS
ELSE
ANG= (3.*ALPH2+6.*ALPH1-ALPHO) /8.

XNEW= X1+ {DCOS(ALPH1)+DCOS{ALPHZ2}+ 4.*DCOS(ANG) )} *DELS/6.
YNEW= Y1+ (DSIN(ALPH1)+DSIN(ALPH2)}+ 4.*DSIN(ANG))*DELS/6.

END IF

XREALl= XREAT+FAC* (XNEW-X1)

IF (DABS{XREAL1-XREALQ).LE.TOLL) GOTO 140
XREALO= XREALl

CONTINUE

IERROR= 1

IF (IOUT8.NE.0} WRITE(8,1001)

IF (IMODE.EQ.1l) WRITE(6,1001)

FORMAT (' LENGTH ITERATION DID NOT CONVERGE')
IF (IERROR.EQ.1) GOTO $999

CONTINUE

IF (N.EQ.2) THEN
RC2= (ALPHZ2-ALPH1)/DELS
ELSE
RC2= (3.*ALPH2-4.*ALPH1+ALPHO)/2./DELS
END IF
= XNEW
= YNEW
XREALl= XREAL+FAC* (XNEW-X1)
(XREAL1.LT.0..OR.XREAL1.GT.1.) THEN

FPRESS= FUNC(XOBJ,1,NPRINT)
IF (ITYPE.EQ.0) THEN
FTEMP= FUNC {XOBJ, 2, NPRINT)
ELSE IF (ITYPE.EQ.1l) THEN
FTEMP= FUNC (XOBJ, 2,NPRINT) -1.
END IF

IF {(ICURVE.EQ.0) THEN ! Bo only
CON1= T+BO*Y1
CON2= 1,

ELSE IF (ICURVE.EQ.1) THEN ! Bo and Pd
CON1=T+BO*Y1-CA*FPRESS
CONZ2=1 )

ELSE IF (ICURVE.EQ.2) THEN ! Bo and Vr
CON1l= T+BO*Y1+VREC*FTEMP**2
CON2= 1.

ELSE IF (ICURVE.EQ.3) THEN ! Bo and Cr
CoNl= TsBO*VY
CON2= 1.-CR*FUNC (XOBJ, 2,NPRINT)

ELSE IF (ICURVE.EQ.4)} THEN ! Bo, Pd and Vr
CONl= T+BO*Y1-CA*FPRESS+VREC*FTEMP**2
CONZ2= 1. :

ELSE IF (ICURVE.EQ.5) THEN ! Bo, Pd and Cr

CON1=T+BO*Y1-CA*FPRESS
CON2= 1.-CR*FUNC (XOBJ, 2,NPRINT)

ELSE IF (ICURVE.EQ.6) THEN ! Bo, Vr and Cr
CON1l= T+BO*Y1+VREC*FTEMP**2
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401
402

400
403

CON2= 1.-CR*FUNC (XOBJ, 2,NPRINT)

ELSE IF (ICURVE.EQ.7) THEN ! Bo, Pd, Vr and Cr
CON1l= T+BO*Y1-CA*FPRESS+VREC*FTEMP**2
CON2= 1.-CR*FUNC(XOBJ,2,NPRINT)

END IF

DSMIN= O.
DSMAX= DELS
DS2= DELS
DO 400 L= 1,MAXL
DS1= .5* (DSMIN+DSMAX)
DO 401 M= 1,MAXA
ANGNEW= ALPH2
ANG= (2.*DSZ+DSl)/DSZ/4.*ALPH1+
(2.*D52+D81)/(DSl+DSZ)/4.*ANGNEW-
DS1/DS2*DS1/ (DS1+DS2) /4. *ALPHO
ALPH2= DS1/CON2* (DS1+DS2)/(2.*DS1+DS2)*
(CONl+BO*DSl/6.*(DSIN(ALPH2)+4.*DSIN(ANG)+DSIN(ALPH1)))+
(DSl+DSZ)/DS2*(DSl+D82)/(2.*DSl+DSZ)*ALPH1—
DSl/DSZ*DSl/(2.*DSl+DSZ)*ALPHO
IF (DABS (ANGNEW-ALPH2).LE.TOLA) GOTO 402
CONTINUE
CONTINUE )
ANG= (2.*DS2+DS1)/DS2/4.*ALPH1+
(2.*DS2+DS1) / (DS1+DS2) /4 . *ALPH2-
DS1/DS2*DS1/ (DS1+DS2) /4. *ALPHO
XNEW= X1+ {(DCOS{ALPH1)+DCOS{ALPH2)+ 4.*DCOS(ANG)} ) *DS1/6.
Y1+ (DSIN(ALPH1)+DSIN(ALPH2}+ 4 ,*DSIN (ANG) ) *DS1/6.
XREAL1= XREAT+FACY* (XNEW-X1)
IF (DABS(XREAL1-XOBJ).LE.TOLL/1000.) GOTO 403
IF ( (XREAL1.LT.XOBJ.AND.FAC.LT.0.).OR.

é

> (XREAL1.GT.XOBJ.AND.FAC.GT.0.)) THEN

DSMAX= DSl
ELSE

DSMIN= DS1
END IF
CONTINUE
CONTINUE
X2= XNEW
Y2= YNEW
ANGW= ALPH2
ALPHA= ALPH2
GOTO 300

END IF

IF (DABS(ALPH2).GT.1.5707963) THEN
ANGW= ALPH2
GOTO 300
ELSE
X2= XNEW
Y2= YNEW
XREAL= XREAL+FAC* (X2-X1)
NOLD= NFLAG
IF (XRFAL.EQ.XP(NFLAG)) THEN
YP (NFLAG) = YNEW
ALPHA= ALPH2
RCURV= RC2
IF (FAC.GT.0.) NFLAG= NFLAG+1l
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IF (FAC.LT.0.) NFLAG= NFLAG-1
ELSE IF (XREAL.GT.XP(NFLAG).AND.FAC.GT.0.) THEN

DX= X2-X1- (XREAL-XP(NFLAG) )

YP(NFLAG)= (YNEW-Y1)/(XNEW-X1)*DX+Y1l

ALPHA= (ALPH2-ALPH1)/ (XNEW-X1)*DX+ALPH1
RCURV= (RCZ2-RC1)/ (XNEW-X1)*DX+RC1

NFLAG= NFLAG+1

ELSE IF (XREAL.LT.XP{NFLAG).AND.FAC.LT.0.) THEN

DX= X2-X1-{XP(NFLAG)-XREAL)

YP(NFLAG)= (YNEW-Y1)}/(XNEW-X1)*DX+Y1l

ALPHA= (ALPH2-ALPH1)/ (XNEW-X1)*DX+ALPH1
RCURV= (RC2-RC1)/ (XNEW-X1)*DX+RC1

NFLAG= NFLAG-1

END IF
PB{NOLD)= .5/DSIN(ANGOB)*
> ((1.-CR*FUNC (XREAL, 2, NPRINT) )} *RCURV+VREC*FTEMP* *2)

SURFNT {NOLD, 1}= DCOS(FAC*ALPHA)
SURFNT (NOLD, 2) = DSIN(FAC*ALPHA)
SURFNN (NOLD, 1) = -1.*SURFNT (NOLD, 2)
SURFNN (NOLD, 2} = SURFNT (NOLD, 1)

END IF

ALPHM1= ALPHM
ALPHM= ALPHO
ALPHO= ALPH1l
ALPH1= ALPHZ
SM1= SM
SM= S0
S0= S1
S1= 82
X1= X2
Y1l= Y2

RC1l= RC2

100 CONTINUE

IERROR= 1
IF (IOUT8.NE.O) WRITE(8,1002)
IF (IMCDE.EQ.1) WRITE(6,1002)
1002 FORMAT(' S INTEGRATION FAILED TO REACH ALPH=ANGOB®)
IF (IERROR.EQ.1) GOTO 9999

300 CONTINUE
X2= XNEW
Y2= YNEW
XREAL= XREAL+FAC* (X2-X1)

PB(NFLAG)= .5/DSIN(ANGOB)*
> { (1.-CR*FUNC (XREAL, 2, NPRINT) ) *RCURV+VREC*FTEMP* *2)
DX= X2-X1-FAC* (XREAL-XP (NFLAG) )

YP(NFLAG)= Y2

SURFNT (NFLAG, 1) = DCOS (FAC*ALPHZ2)

SURFNT (NFLAG, 2) = DSIN(FAC*ALPH2)

SURFNN (NFLAG, 1} = -1.*SURFNT (NFLAG, 2)

SURFNN (NFLAG, 2) = SURFNT (NFLAG, 1)

fr!

XLENGTH= X2

R
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IF (IMODE.EQ.1) WRITE(6,1003)XA, XB, DELS, XLENGTH, XREAL, T, BO,
> NPRINT, NFLAG

IF (IOUT8.GE.2) WRITE(8,1003)XA,XB, DELS, XLENGTH, XREAL, T, BO,
> NPRINT, NFLAG

1003 FORMAT(/,' XA= ', Fl14.6,/,

> ' XB= ', Fl4.6,/,

> ' DELS= ', Fl4.6,/,

> ' XLENGTH= ', Fl4.6,/,

> ' XREAL= ', Fld.6,/,

> ' T= ',Fl14.6,/,
> ' BO= ',Fl4.6,/,

> ' NPRINT= t,I14,/,

> ' NFLAG= ', I14)

9999 CONTINUE
IF (IERROR.EQ.1l) STOP
C
RETURN
END

W. Function FUNC

FUNCTION FUNC (X, I,NPRINT)

IMPLICIT DOUBLE PRECISION (A-H)
IMPLICIT DOUBLE PRECISION (0O-2)

PARAMETER (MXE= 25, MYE= 20) ! # elements in x & y direcs
PARAMETER (MXN= 1+2*MXE) ! # nodes in x-direction
COMMON/MENVAR/

* A(3,MXE),B(3,MXE),C(3,MXE),AP(2),AQ(2)

COMMON/SURFACE/
*XP (MXN) , YP (MXN) , YSURFO (MXN) , PD (MXN) , PB(MXN) , TEMP (MXN) ,
*SURFNN (MXN, 2) , SURFNT (MXN, 2)

DIMENSION ISOLVE1l(2)

INTEGER I,NPRINT,N,NEL,K,NE
DATA E/2.718281828/

C ISOLVE1(N) = 0: FUNC set to 0 past walls
C = 1: Linear decline from value at wall to 0 at DS
C = 2: Constant at value at wall
C = 3: Funcional extrapolation of variable value
i ISOLVEI(1)= 3 ! Pressure
ISOLVE1(2)= 3 ! Temperature
DS= .3

IF (X.GE.XP{NPRINT-2)) THEN
NEL= (NPRINT-1)/2
IF (X.GT.XP(NPRINT))} THEN
IF (ISOLVE1(I).EQ.3) THEN

VG| G SR @
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XT= X
ELSE
XT= XP(NPRINT)
END IF
ELSE
XT= X
END IF
IF ((AP(2).GT..1.AND.I.EQ.2).0R. (AQ(2).GT..1.AND.I.EQ.1)) THEN
ANS= E** (A(I,NEL)* (XT-B(I,NEL)))+C(I,NEL)
IF (AP(2).GT..6.AND.I.EQ.2) ANS= 1.-ANS
IF (AQ(2).GT..6.AND.I.EQ.1) ANS= -1.*ANS
ELSE
ANS= A(I,NEL)*XT**2+B(I,NEL)*XT+C(I,NEL)
END IF
IF (X.GT.XP(NPRINT)) THEN
IF (ISOLVEl(I).EQ.0) THEN
ANS= 0.
ELSE IF (ISOLVEl(I).EQ.1) THEN
IF (X.LE.XP(NPRINT)+DS) THEN
ANS= ANS-ANS/DS* (X-XP (NPRINT) )
ELSE IF (X.GT.XP(NPRINT)+DS) THEN
ANS= 0.
END IF
END IF
END IF

ELSE IF (X.LE.XP{3)) THEN ?
NEL= 1 .
IF (X.LT.XP(1)) THEN ‘
IF (ISOLVELl(I).EQ.3) THEN
XT= X
ELSE
XT= XP(1)
END IF
ELSE
XT= X
END IF
IF ((AP{1).GT..1.AND.I.EQ.2).0R. (AQ(1).GT..1.AND.I.EQ.1)) THEN
ANS= E**{A(I,NEL)*(XT-B{(I,NEL)))}+C(I,NEL)
IF (AP(l).GT..6.AND.I.EQ.2) ANS= 1.-ANS
IF (AQ(1).GT..6.AND.I.EQ.1) ANS= -1.*ANS
ELSE
ANS= A(I,NEL)*XT**2+B(I,NEL)*XT+C{I,NEL)
END IF
IF (X.LT.XP(1l)) THEN
IF (ISOLVE1l{I).EQ.0) THEN :
ANS= 0. o .
ELSE IF (ISOLVE1l(I).EQ.1) THEN §
IF (X.GE.XP{1l)-DS) THEN- :
ANS= ANS/DS* (X+DS-XP (1))
ELSE IF (X.LT.XP({1)-DS) THEN
ANS= 0.
END IF
END IF
END IF

ELSE
NE= 1

o sl
i
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DO 1 K= 3,NPRINT-2,2
NE= NE+1
IF (X.GE.XP(K).AND.X.LE.XP(K-!-Z)) THEN
NEL= NE
GOTO 2
END IF
CONTINUE
CONTINUE
ANS= A(I,NEL)*X**2+B(I,NEL)*X+C(I,NEL)
END IF

FUNC= ANS
RETURN
END

Function FUNC2
FUNCTTION FUNC2 (B,X1,X2,X3,V1,V2,V3)

IMPLICIT DOUBLE PRECISION (A-H)
IMPLICIT DOUBLE PRECISION (0O-Z)

Fl= DLOG{V1-B)-DLOG(V2-B)
F2= X2*DLOG(V3-B)-X3*DLOG(V2-B)
F3= DLOG(V3-B)-DLOG(V2-B)
F4= X2*DLOG (V1-B)-X1*DLOG(V2-B)

FUNC2= F1*F2-F3*F4

RETURN
END

Function FSIN

FUNCTION FSIN(A)
IMPLICIT DOUBLE PRECISION (A-Z)
IF (A.LT.0.) THEN
X= -1.*DSIN(DABS(A))
ELSE
X= SIN(A)
END IF
FSIN= X
RETURN
END
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